تعداد نشریات | 418 |
تعداد شمارهها | 9,996 |
تعداد مقالات | 83,547 |
تعداد مشاهده مقاله | 77,433,175 |
تعداد دریافت فایل اصل مقاله | 54,452,857 |
Soil aggregation indexes and chemical and physical attributes of aggregates in a Typic Hapludult fertilized with swine manure and mineral fertilizer | ||
International Journal of Recycling Organic Waste in Agriculture | ||
مقاله 1، دوره 10، شماره 1، خرداد 2021، صفحه 1-17 اصل مقاله (1018.15 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.30486/ijrowa.2021.1896960.1051 | ||
نویسندگان | ||
Guilherme Wilbert Ferreira* 1؛ Lucas Benedet2؛ Talita Trapp1؛ Andria Paula Lima1؛ Vilmar Muller Junior3؛ Arcângelo Loss1؛ Cledimar Rogério Lourenzi1؛ Jucinei José Comin1 | ||
1Agroecosystems Post-Graduation Program, Rural Engineering Department, Federal University of Santa Catarina (UFSC), Florianopolis, SC, Brazil | ||
2Soil Science Post-Graduation Program, Soil Science Department, Federal University of Lavras (UFLA), Lavras, MG, Brazil | ||
3Environmental Engineering Post-graduate Program, Sanitary and Environmental Engeneering, UFSC, Florianópolis, SC, Brazil | ||
چکیده | ||
Purpose The objective was to evaluate the effects of mineral fertilizers and swine manure fertilization on soil aggregation indexes and on chemical and physical attributes of aggregates in Typic Hapludult managed under minimum tillage system. Method Experiment was implemented in 2013, in southern Brazil. The treatments were control, mineral fertilization (MF), swine manure compost + MF (SMC+MF); pig slurry + MF (PS+MF); PS to supply N for maize and black oat (PS100). In May 2015 and 2016, undisturbed soil samples were collected to obtain soil aggregates. Aggregates stability was evaluated through the mean weight diameter (MWD) and mean geometric diameter (MGD) indexes and aggregate distribution by diameter classes. In macroaggregates, total organic carbon (TOC), total nitrogen (TN), clay flocculation degree (CF%) and ∆pH were evaluated. Results The use of swine manure, associated or not to MF, increases TOC and TN contents in soil aggregates in 67.02 and 125.87%, respectively, for SMC+MF treatment. However, it was not efficient in improving soil physical attributes, reducing soil aggregation indexes, mainly in the 5-10 cm layer, by the decreased values of MWD and MGD. This result corroborates with the increase in microaggregates in all treatments. This was a result of the negative ∆pH values and the increased CF%. Conclusion Despite the increase in organic matter contents observed in this study, this was not enough to guarantee an improvement in soil physical attributes over 4 years. These results show that management must be supported by several conservationist techniques in order to have soil quality. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Organic fertilization؛ Macroaggregates؛ Mean geometric diameter؛ Organic carbon؛ Clay flocculation | ||
مراجع | ||
Adu JK, Oades JM (1978) Physical factors influencing decomposition of organic materials in soil aggregates. Soil Biol Biochem 10: 109–115.
https://doi.org/10.1016/0038-0717(78)90080-9
Agele SO, Ewulo BS, Oyewusi IK (2005) Effects of some soil management systems on soil physical properties, microbial biomass and nutrient distribution under rainfed maize production in a humid rainforest Alfisol. Nutr. Cycl. Agroecosystems 72: 121–134.
https://doi.org/10.1007/s10705-004-7306-x
Agne SAA, Klein VA (2014) Matéria orgânica e atributos físicos de um Latossolo Vermelho após aplicações de dejeto de suínos. Rev. Bra Eng Agrícola e Ambient 18: 720–726.
https://doi.org/10.1590/s1415-43662014000700008
Al-Kaisi MM, Douelle A, Kwaw-Mensah D (2014) Soil microaggregate and macroaggregate decay over time and soil carbon change as influenced by different tillage systems. J Soil and Water Cons 69(6): 574-580.
https://doi:10.2489/jswc.69.6.574
Alvares CA, Stape JL, Sentelhas PC, De Moraes Gonçalves JL, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Zeitschrift 22: 711–728.
https://doi.org/10.1127/0941-2948/2013/0507
Baldi E, Toselli M, Marcolini G, Quartieri M, Cirillo E, Innocenti A, Marangoni B (2010) Compost can successfully replace mineral fertilizers in the nutrient management of commercial peach orchard. Soil Use Manag 26: 346–353.
https://doi.org/10.1111/j.1475-2743.2010.00286.x
Baldock JA, Oades JM, Waters AG, Peng X, Vassallo AM, Wilson MA (1992) Aspects of the chemical-structure of soil organic materials as revealed by solid-state C13 NMR-Spectroscopy. Biogeochemestry 16: 1-42
Balesdent J, Chenu C, Balabane M (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Till Res 53: 215-230.
https://doi.org/10.1016/S0167-1987(99)00107-5
Barbosa GM de C, Oliveira JF de, Miyazawa M, Ruiz DB, Filho JT (2015) Aggregation and clay dispersion of an oxisol treated with swine and poultry manures. Soil Tillage Res 146: 279–285. https://doi.org/10.1016/j.still.2014.09.022
Bartlett MS (1937) Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London, Series A. Mathematical and Physical Sciences 160: 268–282.
https://doi.org/10.1098/rspa.1937.0109
Benites VM, Mendonça ES (1998) Propriedades eletroquímicas de um solo eletropositivo influenciadas pela adição de diferentes fontes de matéria orgânica. Rev Bras Cienc Solo 22: 215-221. http://dx.doi.org/10.1590/S0100-06831998000200006
Blanco-Canqui H, Stone LR, Schlegel AJ, Lyon DJ, Vigil MF, Mikha MM, Stahlman PW, Rice CW (2009) No-till induced increase in organic carbon reduces maximum bulk density of soils. Soil Sci Soc Am J 73: 1871-1879.
https://doi.org/10.2136/sssaj2008.0353
Boddey RM, Jantalia CP, Conceiçao PC, Zanatta JA, Bayer C, Mielniczuk J, Dieckow J, Dos Santos HP, Denardin JE, Aita C, Giacomini SJ, Alves BJR, Urquiaga S (2010) Carbon accumulation at depth in Ferralsols under zero-till subtropical agriculture. Glob Chang Biol 16: 784–795.
https://doi.org/10.1111/j.1365-2486.2009.02020.x
Brunetto G, Comin JJ, Schmitt DE, Guardini R, Mezzari CP, Oliveira BS, Moraes MP de, Gatiboni LC, Lovato PE, Ceretta CA (2013) Changes in soil acidity and organic carbon in a sandy typic hapludalf after medium-term pig-slurry and deep-litter application. Rev Bras Ciênc do Solo 36: 1620–1628. https://doi.org/10.1590/s0100-06832012000500026
Canellas LP, Mendonça ES, Dobbss LB, Baldotto MA, Velloso ACX, Santos GA, Amaral Sobrinho NMB (2008) Reações da matéria orgânica, in Fundamentos da matéria orgânica do solo: Ecossistemas tropicais e subtropicais ed. by Santos GA, Da Silva LS, Canellas LP, Camargo FAO. Porto Alegre:Metrópole
Carter MR (2004) Researching structural complexity in agricultural soils. Soil Tillage Res 79: 1–6.
https://doi.org/10.1016/j.still.2004.04.001
Ceretta CA, Girotto E, Lourenzi CR, Trentin G, Vieira RCB, Brunetto G (2010) Nutrient transfer by runoff under no tillage in a soil treated with successive applications of pig slurry. Agric Ecosyst Environ 139: 689–699.
https://doi.org/10.1016/j.agee.2010.10.016
Choudhary M, Bailey LD, Grant CA (1996) Review of the use of swine manure in crop production: Effects on yield and composition and on soil and water quality. Waste Management e Research 14: 581-595.
https://doi.org/10.1006/wmre.1996.0056
Christensen BT (2001) Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur J Soil Sci 52: 345–353
Ciancio NR, Ceretta CA, Lourenzi CR, Ferreira PAA, Trentin G, Lorensini F, Tiecher TL, De Conti L, Girotto E, Brunetto G (2014) Crop response to organic fertilization with supplementary mineral nitrogen. Rev Bras Ciênc Solo 38(3): 912-922. https://doi.org/10.1590/S0100-06832014000300023
Comin JJ, Loss A, da Veiga M, Guardini R, Schmitt DE, Victoria de Oliveira PA, Filho PB, Couto RR, Benedet L, Júnior VM, Brunetto G (2013) Physical properties and organic carbon content of a Typic Hapludult soil fertilised with pig slurry and pig litter in a no-tillage system. Soil Res 51: 459-470.
https://doi.org/10.1071/sr13130
Costa Junior C, Piccolo M de C, Camargo P de, Bernoux M, Siqueira Neto (2011a) Carbono total e 13C em agregados do solo sob vegetação nativa e pastagem no bioma cerrado. Rev Bras de Ciênc Solo 35: 1241–1252.
https://doi.org/10.1590/S0100-06832011000400017
Costa Junior C, Piccolo M de C, Siqueira Neto M, Piccolo MDC, Cerri CC, Bernoux M (2011b) Nitrogênio e abundância natural de 15N em agregados do solo no bioma cerrado. Ensaios e Ciência 15: 47–66
Costa Junior C, Píccolo M de C, Neto MS, de Camargo PB, Cerri CC, Bernoux M (2012) Carbono em agregados do solo sob vegetação nativa, pastagem e sistemas agrícolas no bioma Cerrado. Rev Bras Cienc Solo 36: 1311–1321.
https://doi.org/10.1590/S0100-06832012000400025
Couto RR, Comin JJ, Beber CL, Uriarte JF, Brunetto G, Belli Filho P (2010) Atributos químicos em solos de propriedades suinícolas submetidos a aplicações sucessivas de dejeto de supinos no município de Braço do Norte, Santa Catarina. Scientia Agraria 11: 493-497.
http://dx.doi.org/10.5380/rsa.v11i6.20396
CQFS-RS/SC - Comissão de Química e Fertilidade do Solo (2004) Manual de calagem e de adubação para os Estados do Rio Grande do Sul e de Santa Catarina. 11. ed. SBCS/NRS: Frederico Westphalen. 376p
Diesel R, Miranda C, Perdomo C (2002) Coletânea de tecnologias sobre dejetos suínos nº14. Porto Alegre: Emater
Dortzbach D, Araujo IS, Pandolfo CM, Veiga M (2013) Carbono e nitrogênio no solo e na biomassa microbiana em glebas com diferentes usos e períodos de aplicação de dejetos líquidos de suínos. Agropecuária Catarinense 26: 69-73
Eaton WD (2001) Microbial and nutrient activity in soils from three different subtropical forest habitats in belize, Central America before and during the transition from dry to wet season. Appl Soil Ecol 16: 219–227.
https://doi.org/10.1016/S0929-1393(00)00117-7
Embrapa - Empresa Brasileira de Pesquisa Agropecuária (2011) Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo. 2nd edn. Rio de Janeiro (2011) (Embrapa-CNPS. Documentos, 132)
Fonte SJ, Yeboah E, Ofori P, Quansah GW, Vanlauwe B, Six J (2009) Fertilizer and residue quality effects on organic matter stabilization in soil aggregates. Soil Sci Soc Am J 73: 961-966. https://doi.org/10.2136/sssaj2008.0204
Gennaro LA, de Souza ZM, de Andrade Marinho Weill M, de Souza GS, Alves MC (2014) Soil physical and microbiological attributes cultivated with the common bean under two management systems. Rev Cienc Agron 45: 641–649.
http://dx.doi.org/10.1590/S1806-6690201400040000
Giacomini SJ, Aita C (2008) Deep-litter and pig slurry as nitrogen sources for corn. Rev Bras Cienc Solo 32: 195–205. https://doi.org/http://dx.doi.org/10.1590/S0100-06832008000100019
Giacomini SJ, Aita C, Pujol SB, Miola ECC (2013) Transformações do nitrogênio no solo após adição de dejeto líquido e cama sobreposta de suínos. Pesqui Agropecu Bras 48: 211–219.
https://doi.org/10.1590/S0100-204X2013000200012
Guedes Filho O, da Silva AP, Giarola NFB, Tormena CA (2013) Structural properties of the soil seedbed submitted to mechanical and biological chiseling under no-tillage. Geoderma 204–205: 94–101.
https://doi.org/10.1016/j.geoderma.2013.04.017
Lilliefors H (1967) On the Kolmogorov–Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association 62: 399–402.
https://doi:10.1080/01621459.1967.10482916
Loss A, Pereira MG, Perin A, Anjos LHC dos (2012) Carbon and nitrogen content and stock in no-tillage and crop-livestock integration systems in the cerrado of Goias state, Brazil. J. Agric. Sci. 4: 1137-1150.
https://doi.org/10.5539/jas.v4n8p96
Loss A, Lourenzi CR, dos Santos E, Mergen CA, Benedet L, Pereira MG, Piccolo M de C, Brunetto G, Lovato PE, Comin JJ (2017) Carbon, nitrogen and natural abundance of 13C and 15N in biogenic and physicogenic aggregates in a soil with 10 years of pig manure application. Soil Tillage Res 166: 52–58. https://doi.org/10.1016/j.still.2016.10.007
Lourenzi CR, Ceretta CA, da Silva LS, Girotto E, Lorensini F, Tiecher TL, De Conti L, Trentin G, Brunetto G (2013) Nutrientes em camadas de solo submetido a sucessivas aplicações de dejeto líquido de suínos e sob plantio direto. Rev Bras Cienc Solo 37: 157–167.
https://doi.org/10.1590/S0100-06832013000100016
Lourenzi CR, Ceretta CA, Silva LS da, Trentin G, Girotto E, Lorensini F, Tiecher TL, Brunetto G (2011) Soil chemical properties related to acidity under successive pig slurry application. Rev Bras Ciênc Solo 35:1827–1836.
https://doi.org/10.1590/s0100-06832011000500037
Mafra MSH, Cassol PC, Albuquerque JA, Correa JC, Grohskopf MA, Panisson J (2014) Acúmulo de carbono em Latossolo adubado com dejeto líquido de suínos e cultivado em plantio direto. Pesqui Agropecu Bras 49: 630–638.
https://doi.org/10.1590/S0100-204X2014000800007
Mafra MSH., Cassol PC, Albuquerque JA, Grohskopf MA, Andrade AP, Rauber LP, Friederichs A (2015) Organic Carbon Contents and Stocks in Particle Size Fractions of a Typic Hapludox Fertilized With Pig Slurry and Soluble Fertilizer. Rev Bras Ciênc Solo 39: 1161–1171.
https://doi.org/10.1590/01000683rbcs20140177
Marcondes T (2017) Síntese Anual da Agricultura de Santa Catarina 2016-2017. v 1. Florianópolis, Epagri/Cepa (2017)
Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27:31-36
Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76: 319–337. https://doi.org/10.1007/BF02205590
Oliveira DMS, Lima RP, Jan Verburg EE (2015) Qualidade física do solo sob diferentes sistemas de manejo e aplicação de dejeto líquido suíno. Rev Bras Eng Agric Ambient 19: 280-285. https://doi: 10.1590/1807-1929/agriambi.v19n3p280-28
Plaza C, Hernández D, García-Gil JC, Polo A (2004) Microbial activity in pig slurry-amended soils under semiarid conditions. Soil Biol Biochem 36: 1577–1585.
https://doi.org/10.1016/j.soilbio.2004.07.017
Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171: 41-53
Sartor LR, Assmann AL, Assmann TS, Bigolin PE, Miyazawa M, Carvalho PC de F (2012) Effect of swine residue rates on corn, common bean, soybean and wheat yield. Rev Bras Ciênc Solo 36: 661–669.
https://doi.org/10.1590/s0100-06832012000200035
Schmitz D, Loss A, Lourenzi CR, Muller Junior V, Da Veiga M, Brunetto G, Comin JJ (2017) Atributos físicos de Cambissolo Húmico submetido a fontes de nitrogênio em pomar de macieira. Comunicata Scientiae 8: 316-325
Six J, Paustian K, Elliott ET, Combrink C (2000) Soil structure and soil organic matter: I. Distribution of aggregate size classes and aggregate associated carbon. Soil Sci Soc Am J 64: 681-89
Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res 79: 7–31. https://doi.org/10.1016/j.still.2004.03.008
Soil Survey Staff (2014) Keys to soil taxonomy. Usda 12, 410. https://doi.org/10.1063/1.1698257
Souza IA de, Ribeiro KG, Rocha WW, Pereira OG, Cecon PR (2014) Physical properties of a Red-Yellow Latosol and productivity of a signalgrass pasture fertilized with increasing nitrogen doses. Rev Bras Ciênc Solo 37: 1549–1556.
https://doi.org/10.1590/s0100-06832013000600011
Tavares Filho J, Ribon AA (2008) Resistência do solo à penetração em resposta ao número de amostras e tipo de amostragem. Rev Bras Ciênc Solo 32: 487–494.
http://dx.doi.org/10.1590/S0100-06832008000200003
Tavares Filho J, Tessier D (2010) Effects of different management systems on porosity of oxisols in Paraná, Brazil. Rev. Bras. Ciência do Solo 34: 899–906.
https://doi.org/10.1590/s0100-06832010000300031
Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ (1995) Análises de solo, plantas e outros materiais. 2nd edn. Porto Alegre: Universidade Federal do Rio Grande do Sul
Tivet F, Sá JCM, Lal R, Briedis C, Borszowskei PR, Santos JB, Farias A, Hartman DC, Nadolny Junior M, Bouzinac S, Seguy L (2013) Aggregate C depletion by plowing and its restoration by diverse biomass-C inputs under no-till in sub-tropical and tropical regions of Brazil. Soil & Till Res 126: 203- 218
Vezzani FM, Mielniczuk J (2011) Agregação e estoque de carbono em argissolo submetido a diferentes práticas de manejo agrícola. Rev Bras Cienc Solo 35: 213–223.
https://doi.org/10.1590/S0100-06832011000100020
Viana ET, Batista MA, Tormena A, Carlos A (2011) Atributos físicos e carbono orgânico em Latossolo Vermelho sob diferentes sistemas de uso e manejo. Rev Bras Ciênc Solo 35: 2105–2114. http://dx.doi.org/10.1590/S0100-06832011000600025
Victoria de Oliveira PA, Higarashi MM (2006) Unidade de compostagem para o trataento de dejetos suínos. Concórdia: Embrapa Suínose Aves
Wuddivira MN, Camps-Roach G (2007) Effects of organic matter and calcium on soil structural stability. Eur J Soil Sci 58: 722–727. https://doi.org/10.1111/j.1365-2389.2006.00861.x this ref is no in the text
Yeomans JC, Bremner JM (1988) Communications in soil science and plant analysis: A rapid and precise method for routine determination of organic carbon in soil. Commun. Soil Sci Plant Anal 19; 467–1476
Yoder RE (1936) A direct method of aggregate analysis of soil and a study of the physical nature of erosion losses. Journal of the American Society of Agronomy 48: 377-350
Zhou H, Peng X, Perfect E, Xiao T, Peng G (2013) Effects of organic and inorganic fertilization on soil aggregation in an Ultisol as characterized by synchrotron based X-ray micro-computed tomography. Geoderma 195–196: 23–30. https://doi.org/10.1016/j.geoderma.2012.11.003 | ||
آمار تعداد مشاهده مقاله: 1,084 تعداد دریافت فایل اصل مقاله: 856 |