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Abstract 
In addition to the improved calculation of the parameter values, a high yield 

estimation is necessary for designing analog integrated circuits. Although Monte-
Carlo (MC) simulation is popular and precise for yield estimation; however, its 
efficiency is not high enough and it requires too many costly transistor-level 
simulations. Therefore, some accelerated methods are needed for MC simulations. 
This paper presents a novel approach for improving automated analog yield 
optimization using a three-stage strategy. Firstly, critical solutions are recognized 
using Critical Analysis (CA) and Multi-objective Optimal Computing Budget 
Allocation (MOCBA). Then they are separated from non-critical answers. It's so 
helpful to avoid repeating the Monte Carlo (MC) simulations of non-critical 
solutions. Due to the existence of several objective functions (typically more than 
one) in the yield optimization problem, by using the Multi-Objective Optimization 
(MOO) in the second stage, more precise answers can be found.  Finally, MC 
simulations are performed to explore the proposed algorithm performance.  
Simulation results show that our approach locates higher quality in terms of yield 
rate within less run time and without affecting the accuracy. 
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1. Introduction 

Yield, in the integrated circuit manufacturing industry, is defined as the ratio of the 
number of items produced that are qualified for sale to the total number of items 
produced [1]. Design for Manufacturability and Yield is one of the most important 
concepts in analogue integrated circuits manufacturing [24]. Novel and robust 
techniques for automated analog yield optimization are urgently needed to avoid costly 
re-design iterations. However, identifying an optimized nominal design solution faces 
vast challenges.  

The general flow chart for yield optimization is given in Figure 1[3]. The 
optimization engine generates a design solution, and the evaluator estimates its yield. 
Since an accurate yield estimation is much more computational expensive than a 
nominal performance evaluation, such a yield optimization often takes a large amount 
of computing resources and CPU time. In order to improve the computational efficiency 
of yield optimization, two approaches can be considered:  
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1- cut down the number of yield estimations. 
 2- reduce the computational costs of yield estimations. 

Most of the existing yield optimization techniques put their effort into the latter 
approach. The yield analysis approaches can be classified into statistical methods and 
non-statistical methods. Non-statistical methods include corner-based methods [4] and 
performance-specific worst-case design (PSWCD) methods [5]. The main advantage of 
these methods is the limited number of their simulations. But their drawback is the 
difficulty to know in advance the worst-case corner points. Moreover, simple and fast 
sensitivity analysis in worst-case design methods may harm the accuracy in nanometer 
technologies. Statistical methods include Monte-Carlo (MC)-based methods and 
response-surface-based (RSB) methods [6]. The challenge of these methods is 
considering the balance between the accuracy and the complexity of the model, as well 
as the accuracy and the number of samples. Hence, these approaches can be used for 
yield optimization but have considerable accuracy problems. 

 

Circuit Topology

Design 
Specifications

Technology 
Parameters

Design Variables

Optimization Core

New Solution

Yield EvaluationSimulation Tools
 

Figure 1. General  flowchart  for yield optimization [2] 
 

Monte Carlo-based (MC-based) yield optimization methods feature high generality 
and accuracy, so they are still the most reliable and commonly used technique for yield 
estimation till now. Nevertheless, a large number of simulations are needed for MC 
analysis, therefore limiting its use within an iterative yield optimization loop. Although 
some speed enhancement techniques for MC simulation have been proposed [7,8], the 
efficiency gain is not high enough to make MC-based yield optimization practical. 

Therefore, in this paper, a three-stage approach is proposed for the yield optimization 
of analog integrated circuits. This method improves the efficiency of yield optimization 
by cutting down both the number of simulation and computational budget of yield 
estimations. Due to its high efficiency in terms of function evaluations, the proposed 
approach is quite suitable for yield optimization problems.  

 The rest of this paper is organized as follows. Section 2 introduces the background 
knowledge for the proposed algorithm. The general framework of proposed approach is 
given in Section 3. Section 4 tests proposed algorithm by practical examples. The 
concluding remarks are presented in Section 5. 
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2. Background knowledge for the proposed method 
Since yield optimization at this research is established based on MOCBA, MOO, and 

MC, they are briefly reviewed here. 
 

2.1 Multi-objective computing budget allocation 

 Optimal computing budget allocation (OCBA) is a popular ranking and selection 
(R&S) procedure. The framework is proposed to enhance the simulation efficiency by 
intelligently allocating replications to each alternative solution based on mean and 
variance. OCBA shows that the computing budget allocated to any non-best design is 
proportional to its variance and inversely proportional to its difference from the best 
design [9]. OCBA problem is formulated as an optimization model with the objective of 
maximizing the probability of correct selection (PCS), which is the probability that the 
design we select is truly the best. The problem is subject to the constraint of limited 
computing budget, and the decision variables are the number of replications allocated to 
each design alternative. Therefore, there are two key issues in solving OCBA problems:  
1- how to define PCS 
2- how to solve the non-linear optimization model. 

 Usually, PCS is approximated by a proper lower bound instead of a closed-form 
analytical expression [10]. Even though the fundamental OCBA framework is proposed 
for selecting the best alternative with just one objective, OCBA procedures for solving 
multi-objective problems have been developed. For MOCBA problems, direct cardinal 
comparison may not be applicable as multiple objectives may compete with one another 
and we are not able to find a single best solution that simultaneously optimizes all the 
objectives. The transformation approach, which converts multi-objective problems into 
single-objective ones by aggregating the performance measures using a functional form 
is indifferent from the fundamental single-objective problems, and there is no consensus 
about the value of the weights [11]. 

 The concept of Pareto optimality is employed instead, where the goodness of a 
design is measured in terms of domination [12-14]. Because of the underlying 
complexity in cross comparisons of designs, all designs can be grouped by the roles 
they are playing, either dominating or being dominated. For designs playing the role of 
dominating, each of them is dominating multiple designs, and thus multiple 
comparisons are incurred, the related allocation follows the sum of weighted variance 
rule, where the variance rules out the comparisons for significant differences; for 
designs playing the role of being dominated, each design is only dominated by one 
design.  

 
2.2 Critical analysis 

MC simulation is a common method for estimating of yield; however, practically it is 
not very effective because of its slowness. One way to alleviate this problem is the 
removal of non-critical solutions which prevents excessive allocation of simulations and 
computational efforts [15]. A large number of simulations repeats to considerably 
discern between competing designs as an important contribution preventing 
optimization of random simulation. The cost of computing, which itself involves 
repetition of simulation, is expensive and usually unacceptable. To ensure the 
correctness of the optimum selection of an optimal plan, a larger amount of 
computational budget should be disbursed for critical designs to determine the best plan. 
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Meanwhile, limited computational effort should be considered for non-critical projects 
that have little chance of representing the best of the project.  

Based on this theory, by using the MOCBA technique, critical and non-critical 
solutions can be distinguished. Also, simulation repetitions could be allocated between 
them optimally. Therefore, it reduces computational effort by allocating optimal 
computing budget between solutions. Correct selection with a rational yield estimation 
while have the smallest computational effort is the main requirement. To reduce the 
estimator variance, a greater number of simulations should be allocated to the critical 
solutions which is the main aim to use MOCBA in this approach. This will cause less 
computational effort spent on non-critical solutions that have little impact recognition 
the suitable solutions, even with large variances. This is achieved by utilizing of 
Algorithm 1 [16].   
Algorithm 1. MOCBA for CA 

1- Run 0N  replications for each design. Set the iteration index 0v = , and 
individual scenario sample sizes 1 0,...,v v

nN N N= . 
2-  Construct the observed Pareto set obs

pS . 
3- While (termination condition is not satisfied) Increase the number of simulation 

replications by a certain amount D .  
4- Calculate the new allocation 1 1

1 ,...,v v
nN N+ +  according to the allocation rules 

stated in Lemma 4, 5 that can be found in [16]. 
5- Perform an additional 1min( , max(0, ))v v

i iN Nt + -  replications for design 
1, 2,...,i n= . Set 1v v= + . 

6- Construct a new observed Pareto set obs
pS  . 

7- Output designs in the observed Pareto set obs
pS . 

t  is the maximum possible number of replications that can be allocated to a design 
at each iteration. 
 

2.3 Multi-objective optimization 
The accuracy and reliability of the results can be satisfied by implementing two or 

more objective functions that are called multi-objective optimization (MOO) [22-23]. 
The basis of multi-objective analog circuit optimization is multi-objective evolutionary 
algorithms (MOEAs) [19-22]. Here is a compromise between the incompatible 
objectives. In MOO, instead of the best solution, there are several solutions for all 
purposes. The multi-objective optimization equation is given by  

(1)                                                                                           1 2( ), ( ),..., ( )nf x f x f xMin/max  
x UÎSubject to:   

Where n  is the number of objective functions, U is feasible set, ( )nf x  is thn objective 
function, x is solution and min/max is combined object operations.  

 
 

3. Proposed approach 

Figure 2 shows the flowchart of the proposed approach that is composed of a three-
stage algorithm. At the first stage, a set of designs under defined constraints is 
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generated. Then, the designs that met our desired characteristics, are separated from 
non-critical designs by the use of CA and MOCBA as previously described. Then the 
selected best designs are forwarded to the next stage. For optimizing the selected 
solutions, Non-dominated Sorting Genetic Algorithm-III (NSGA-III) is used at this 
stage [23]. 
 
3.1 NSGA - III  

We expose the NSGA - III that is designed to face up with many objectives at the 
same time (more than two). The NSGA - III is based on the steps described in algorithm 
2: 
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No

Yes

No

First Stage

Second Stage
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Figure 2. The flowchart of the proposed approach 

 
 Algorithm 2. NSGA – III 
 1: Calculate the number of reference points (H) to place on the hyper-plan 
 2: Generate the initial population at random taking into account the resources                  

assignment constraints (POP chromosomes)  
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 3: Realize the non-dominated population sorting 
 4: for 1i =  Stopping criteria do 
 5: Select two parents P1 and P2 using the tournament method 
 6: Apply the crossover between P1 and P2 with a probability Pc 
 7: Realize the non-dominated population sorting 
 8: Normalize the population members  
 9: Associate the population member with the reference points 
 10: Apply the niche preservation (counter)  
 11: Keep the niche obtained solutions for the next generation 
 12: end 

Determination of reference points on a hyper-plane: We must define a set of 
reference points to ensure the diversity of the obtained solutions. Different points are 
placed on a normalized hyper-plan that have the same orientation in the all the axis. The 
number of reference points ( H ) is defined by: 

 1C g
H

g
+ -æ ö

= ç ÷
è ø

                                                                                                                 (2)  

Where C  is the number of objective functions, g  is the number of divisions to 
consider on every objective axis (for 3 objectives and 4 divisions, we will have 15 
reference points). The reference points are place on the hyper-plan and the solutions will 
be described by a Pareto front, then the solutions will be associated with the created 
reference points. 

 Normalization of the population members: adaptive normalization of population 
members is applied and the arbitrary point is specified by recognizing the minimum 
value ( min

iZ ). '( )if x  translates each objective value of tS  in such a way that the arbitrary 
point of translated tS becomes a zero vector. 

' min( ) f ( )= -i i if x x Z                                                                                                                             (3) 
Association among reference points and solutions: After normalizing each objective 

function, it is necessary to associate each population member with a reference. We 
define a reference line for each point joining the reference point with the origin point. 
Then, we determine the perpendicular distance among each population member and 
each reference line. Finally, the reference point that has the closest reference line from a 
population individual is associated to this population member. 

Niche preservation operation: A reference point can be associated to one or more 
solution members, but we must keep the solution that is closer of the point 
(perpendicular distance from the reference line. 

 Genetic operators: The children generation has been made applying the genetic 
operators used in the NSGAII algorithm. we have fixed a population size (POP) close to 
the number of reference points ( H ) to give the same importance to all the population 
members. 

Finally, by using the selected solutions from the previous step and the MC method, 
the accurate yield is calculated. If the desired value is not obtained, stages 1 and 2 of the 
algorithm are repeated. The steps of the three-stage presented approach are below: 
Algorithm 3. Proposed Approach 

Step 1: A set of designs under defined constraints is generated. 
Step 2: Critical designs that meet our desired specifications are separated from non-
critical designs by the use of CA. 
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Step 3: For more precise solutions, NSGA-III is performed on selected solutions to 
optimize designs. 
Step 4: MC method is used to calculate the exact yield for the selected solution. 
Step 5: If the desired value is not obtained, go to step 1. 
Step 6: End. 
 

4. Simulation Results 

The proposed algorithm is tested on a two-stage fully differential op-amp shown in 
Figure 3. All simulations are performed on a workstation with an Intel(R), Core (M) i7-
4790K CPU@4GHz, 16GB RAM, and 64-bit operating system with the x64-based 
processor. MATLAB R2020 and Synopsys HSPICE are used as the MC simulator and 
evaluator of circuit performance parameters. 

Figure 3. Two-stage fully differentially op-amp.  
  

The CMOS technology used in circuit design is 180 nm and 1.8V power supply. The 
specifications are DC Gain ≥ 65 dB, unity gain bandwidth ≥ 350 MHz, Phase margin ≥ 
60°, Output Swing ≥ 1.9 V, Power dissipation ≤ 10 mW, Slew rate ≥ 390 /V sm . In this 
method, design variables include the compensation capacitance, bias voltages, the 
number of parallel transistors, the transistor width, the transistor length and the 
threshold voltage. The transistor width and length are in the range of 0.1μm to 100μm 
and 0.1μm to 20μm, respectively. The range of the compensation capacitances changes 
from 0.1 pF to 10 pF. 0N = 5 is selected in stage one. Also, a value of 5 is selected for 
the parameter D  in all simulations. The total budget of simulations is 10000.  

To show the performance of the proposed method, simulations with 450 iterations for 
each method have been performed. The reason for choosing this number of iterations is 
that the yield variations after this value are almost constant. Also, another condition 
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considered in the first stage is that the solution with a minimum yield value of 90% will 
be selected to be sent to the next stage. 

Figure 4, Table 1 and Table 2 show the result of the simulations and component's 
specification for the two-stage op-amp from one solution respectively. Using the 
proposed approach and according to Figure 4, the yield diagram starts at point 90% and 
ends at point 99.80%. The values of passive components, bias voltages, and size of 
transistors, for the two-stage op-amp from a solution are reported in Table 1. The 
simulation results of DC gain, unity-gain bandwidth, phase margin, power dissipation, 
output swing, and slew rate for the op-amp are given in Table 2. The results indicate 
that DC gain, unity-gain bandwidth, phase margin, power dissipation, output swing, and 
slew rate of the op-amp are 77.82 dB, 411.35 MHz, 62.5°, 7.68 mW, 3.28 V and 792.21 
V/μs , respectively. By comparing the simulation results of Table 2 and the values 
considered as design constraints, it is observed that the results in addition to meeting the 
designer's specifications have excellent values for circuit design. 

 

  
Figure 4. The proposed yield method  

  
To compare the efficiency of the proposed method with a number of existing 

methods, we also tested the ORDE [15], the LHS [7] and the proposed algorithm in [24] 
on the circuit shown in Figure 3. As can be seen from the results of Table 3, the 
proposed algorithm is more accurate than the other two algorithms due to the use of 
MOCBA and the NSGA-III. However, the ORDE method has less computational time 
than the proposed approach due to its shorter computational steps. It is also observed 
that by using of the CA and MOCBA and eliminating unnecessary simulations for non-
critical solutions, it has a higher efficiency than the LHS and OCBA method that using 
PSO. It also has a much lower computational load. Accordingly, it can be concluded 
that the proposed three-stage algorithm has acceptable accuracy and speed in 
comparison with the other methods. 
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Table 1. Size of transistors, passive components, and                                                                                   
              bias voltages for the two-stage op-amp from one solution.  

Parameter Value 
0(W/ L) m m´5 23.88 / 0.18m m 
1,2(W/ L) m m49.78 / 0.18m m 

3,4(W/ L) m m´3 22.71 / 0.18m m 

5,8(W/ L) m m´2 28.92 / 0.18m m 

6,7,9,10(W/ L) m m´2 80.39 / 0.18m m 

11,12(W/ L) m m´2 23.88 / 0.36m m 

13,14(W/ L) m m´2 80.39 / 0.36m m 

0,3C 1pF 

1,2,4,5C 1.05 pF 
1V 0.58 V 

2V 1.1V 

3V 0.73V 

4V 1.2 V 

5V 0.61V 

6V 1V 

  
Table 2. Specifications of the two-stage op-amp.  

No. Specifications Schematic-level simulation 
1 DC gain (dB)  77.82 

2 unity gain bandwidth (MHz) 411.35 

3 Phase margin (dg)  62.5 

4 power dissipation (mW) 7.68 

5 Output Swing (V) 3.28 

6 )V/μsSlew rate ( 792.21 

  
 

Table 3. Yield results and Run time for three methods.  

Run time (h) Mean Worst Best Method 
59 89.24 84.99 92.87 LHS  
22 98.14 97.46 99.35 ORDE 
25 97.83 96.95 99.08 OCBA+PSO 
26 99.80 99.71 99.98 Proposed 

method  

5. Conclusion 
In this paper, a three-stage method has been presented having less computational 

effort and high accuracy compared to the MC based method. The proposed method used 
the CA to prevent repetition of over design. Also, by using the NSGA-III, the yield 
value has been enhanced. Another advantage is that it is generalizable so that it can be 
used for any high-performance analog circuit such as operational amplifiers or data 
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converters. The proposed approach has been tested on a two-stage op-amp. The results 
of the simulation substantiate our claim. 
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