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 ABSTRACT 

 This paper deals with the mathematical approach to discuss the 

radially varying transient temperature distribution in a multilayer 

composite hollow sphere subjected to the time independent 

volumetric generation of heat in each layer. Initially the layers are 

at arbitrary temperature and the analysis assumes all the layers of 

the body are thermally isotropic and having a perfect thermal 

contact. It is novel to obtain the exact solution for temperature field 

by the separation of variables by splitting the problem into two 

parts homogeneous transient and non-homogeneous steady state. 

The set of equations obtained are solved by using the rigorous 

applications of analytic techniques with the help of eigen value 

expansion method. The thermoelastic response is studied in the 

context of uncoupled Thermoelasticity. The results obtained 

pointed out that the magnitude and distribution of the temperature 

and thermal stresses are greatly influenced by the layered heat 

generation parameter. The accuracy and feasibility of the proposed 

model is demonstrated by an example of three layered hollow 

sphere of Aluminium, Copper and Iron subjected to given 

conditions. The results presented in this article could be found 

hardly in an open literature despite of extensive search. 

                                 © 2020 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HE heat conduction in multilayer composites solids has a variety of engineering applications. The research in 

industrial furnaces, nuclear reactors, chemical industry, turbines, space crafts and instruments are the topics of 

continued research where these multilayer materials are highly employed. In early nineteenth century, the 

manufacturing industry had to face critical problems of designing advanced materials with the different types of 

geometries of multilayer having variety of boundary conditions. Many of these applications require a detailed 

knowledge of transient temperature, heat flux and thereby stress distribution within the component layers. Both 

analytical and numerical techniques are used to sort out the problems. The analytical solution is useful to gain better 
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insight through the mathematical form of solution compared to other one. The series solution of one-dimensional 

problem, using separation of variable were obtained several decades ago, Bulavin and Kashcheev [1] used the 

method of separation of variables and orthogonal expansion and orthogonal expansion of function over a one 

dimensional multilayer region to obtain transient heat conduction problem involving distributed volume heat source. 

However, since computation of eigen values needed for this methodology is difficult. Yener and Ozisik [2] 

discussed the solution of unsteady heat conduction in multi region media with time dependent heat transfer 

coefficient, Lu et al. [3] obtained the analytical solution for the problem of transient heat conduction in 

multidimensional composite cylinder slab is developed for a time dependent boundary conditions. They discussed 

the problem by the application of the method of the Laplace transform and separation of variable together with 

variable transformation, Jain et al. [4] presented an analytical double-series solution for the time-dependent 

asymmetric heat conduction in a multilayer annulus. Recently, Kukla and Siedlecka [5] considered the heat 

conduction in radial direction while time dependent boundary conditions are assumed. Chen and Yang [6] discussed 

the thermal response one dimensional quasi-static coupled thermoelastic problem of an infinite long cylinder 

composed of two different materials. They applied the Laplace transform with respect to time and used the Fourier 

series and matrix operation to obtain the solution, Jen and Lee [7] considered the solution by using the Laplace 

transform and the finite difference method. They obtained the solution for temperature and thermal stress 

distribution, Lee [8] used Laplace transform and finite difference method to obtain the solution of wide range of 

transient thermal stresses, Ootao [9] presented transient thermoelastic analysis for a multilayer hollow cylinder with 

piecewise power law non-homogeneity. Recently, Koo and Valgur [10] discussed the thermoelastic effects in 

deformation of plates with arbitrary changing elastic parameters and temperature through thickness. Using the semi 

inverse method, a simple analytic solution is obtained for a thermoelastic problem of a nonhomogeneous plate with 

arbitrary contour. Zamani Nejad et al. [11] introduced an analysis of displacements and stresses of FGM thick 

spherical pressure vessels with exponential varying material properties using the semi-analytical solution. Pawar et 

al. [12] presented the exact analytical solution for thermal stresses in a hollow thick sphere of functionally graded 

material subjected to non-uniform internal heat generation using theory of elasticity. The distribution of thermal 

stresses for different values of powers of the module of elasticity and varying power of index of heat generation is 

studied, Pawar et al. [13] discussed the thermoelastic analysis of the functionally graded solid sphere due to non-

uniform heat source inside it .The implicit finite difference scheme is used to determine the transient temperature 

and stress field inside the sphere. Guerrache and Kebli [14] investigated an analytical solution of an axisymmetric 

frictionless contact problem developed on a rigid circular base with penetration of rigid punch into an elastic layer. 

This investigation is concerned with the mathematical approach to obtain the transient temperature distribution for a 

composite multilayer by the method discussed by Ozisik [15]. That method is applied to spherical geometry and 

radially varying time independent volumetric generation of heat inside the each layer is introduced. Then solution is 

obtained for thermal stress fields as Noda [16].  

The aim of the work is to obtain the mathematical model for predicting the temperature and stress field inside 

multilayer composite hollow sphere experiencing internal heat source. The analysis is made on the basis of 

uncoupled thermoelasticity. We have used the known temperature field obtained earlier to determine stress field 

inside the body. The results are used in illustrative example involving three layered hollow sphere of Aluminium, 

Copper and Iron subjected to given conditions and it is illustrated numerically and graphically. The results presented 

here could not be found in an open literature despite of extensive search. 

2    FORMULATION OF THE PROBLEM 

This Works deals with uncoupled problem of thermoelasticity of multi-layered sphere using quasi static approach. 

The problem possess the spherical symmetry with (i) material of each layer is assumed to be homogeneous, isotropic 

and linearly  thermoelastic (ii) the results are discussed for small variation in temperature (iii) the composite sphere 

is constructed of multilayer with perfect material properties (iv) tll physical quantities are the assumed to be 

functions of the radial coordinate and time only (v) the medium is initially undisturbed, traction free and without 

body force. The time independent volumetric heat source  ig r  is actuated in each layer for 0t  .  
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Fig.1 

Geometry of the composite multilayer hollow sphere. 

 

The radial heat conduction in the thi  layer is governed by the differential equation as Ozisik [15] 
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Initially  
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nh is the heat transfer coefficient of outer surface. The following dimensionless variables defined and used as 

follows: 
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where 0 0,T k and
 0  are the typical values of temperature, thermal conductivity and thermal diffusivity 

respectively. Introducing these new variables into the governing and auxiliary Eqs. (1-6) the problem of heat 

conduction will transformed into more concise form as: 

 

 2

2

2 1ii i i

i i

Q

k

  

  

  
  

 
,   0

0 1
n

r

r
    ,     1i i     ,   0t                                                               (8) 

 

Subjected to conditions 
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  and heat transfer parameter  

  2

0 0

i n
i

g r r
Q

k T
   

3    THERMOELASTICITY PROBLEM  

In this the temperature determined from Eq. (1) as the known temperature function to obtain the temperature 

(thermal) stresses in a given body. We consider the multilayer hollow spherical body is free of external mechanical 

loads, in which the inner  0r a  and the outer surfaces  nr b  are under given thermal condition and ambient 

medium is at zero temperature. We assume that an ideal thermos-mechanical contact exists between the layers and 

that the material properties are different but constant in each layer. 
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One dimensional problem in a spherical coordinates which means spherically symmetric problem, in which 

shearing stress and strain components vanish, stress and strain components along   and   directions are identical. 

The only nonzero components of the displacement are the radial component  ,r iu r  which can be denoted by ,r iu  

for thi   layer. The stress displacement relations for the isotropic and homogeneous material layer may be expressed 

as Noda [16] 
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The corresponding thermoelastic stress strain relation or Hook’s law are 
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where , ,,rr i i  and
 ,i  GPa the component of stress in radial and tangential direction, , ,,rr i i   is strain 

components in radial and tangential direction for the thi   layer of the composite hollow sphere.  ,0i i iT T T r   , 
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The equilibrium equation in radial direction excluding the body forces and inertia term as, 
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Assuming the traction free condition i.e. the boundary conditions of inner and outer surfaces 

 

 
0, 0rr r r   at 0 ,r r   , 0

nrr r r  at nr r         
 
 (14) 

 

The stress components are obtained can be expressed for multilayer composite hollow sphere as [16]  
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where tia
1

K

 
 
 

  is the coefficient of linear expansion of thi layer. 

Assuming the interface conditions i.e. continuity on the interfaces  
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Using the dimensionless coordinates defined as (7) one can obtain the following stress functions in 

dimensionless form as, 
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The Eqs. (1-9, 17) constitutes the mathematical formulation of the heat conduction and thermoelasticity problem 

in dimensionless variables. 

4    SOLUTION 

Defining new dependent variable  ,iU    as: 
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0  ,  
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The problem of heat conduction defined by (19-20) is a heat conduction is with non-homogeneity due to 

dimensionless heat generation parameter  iQ   and initial temperature  ,0iU 
 
are the function of space variable 

 and hence the problem as Ozisik [15] can be solved by splitting the problem (19-20) into nonhomogeneous steady 

state with heat generation and homogeneous transient problem then solution written as
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The problem (22-23) can be solved by using general method of higher order i.e. variation of parameter with 

constant coefficients, writing the solution of (22) as: 
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Hence, 
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 Using the value of  ,s iU   from Eq. (26) one gets 
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Using the method of separation of variable differential Eq. (27) will be separated as: 
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im is a separation constant, the subscript m is induced to imply there are infinite number of discrete values of 

Eigen   of corresponding eigen function im and subscript i  for layers. The solution for the time variable function 

  is immediate from Eq. (29) as: 
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Hence the temperature distribution  ,iU  
 
is obtained by adding (26) and (34) as: 
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The system of equations in unknowns (37) is expressed in a matrix form as: 
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From (38) one gets the values of ,1 ,1 ,2 ,2 ,3 ,3, , , , ,s s s s s sa b a b a b .... ,s na and ,s nb and then        ,1 ,2 ,3 ,, , ....s s s s nU U U U    ,  

for layers 1,2,3,......i n . We follow the method given as Ozisik [15] to solve eigen value problem. The 

homogeneous system of equations to obtain imA and imB , assuming 1 1mA   and for heat flux to be continuous at 
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The 2n  equations of above matrix can be used to find the coefficients imA  and imB  
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The solution of above matrix gives coefficients 1 2 2 3 3, , , ,m m m m mB A B A B .....
 nmA  and nmB .The transcendental 

equation to find positive roots i.e. the eigen values 1 11 12 13 1. . ...... ...m mi e         , which is obtained from 

the determinant of the  2 2n n  coefficient matrix in (39) should vanish. This is the condition leads to the 

following transcendental equation for determination of the eigen values 1m  and hence eigen functions will be 

obtained. 
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5    NUMERICAL RESULTS AND DISCUSSION 

In this work, we carried out some numerical results for temperature distribution in a multilayer composite hollow 

sphere and the resulting thermal stresses. For this a three layer composite multilayer hollow sphere was selected to 

demonstrate the numerical calculations. For the multilayer the geometry is shown in Fig.1 and the dimensionless 

physical and mechanical quantities are given in tables. We considered the multilayer composed of Aluminium, 

copper and Iron. The inner and outer radii of the sphere are assumed to be 0.02 to 0.30 (m). Each layer assumed to 

have different thickness. The numerical results are illustrated in terms of the dimensionless Temperature distribution 

 ,iU    and components of thermal stresses ,i  and ,i . The results are represented graphically. The initial 

temperature in multilayer sphere is assumed as   0 293.5if r T K  and it is also assumed as reference 

temperature  0T  and internal heat source is taken as   0iQ Q  . 

 

Table 1 

Physical parameters of the composite hollow sphere .  

Layer 1i   to i    , 1,2,3i   Width of each layer 

1i   0   to 1 ,  0.06 to 0.33 0.027 

2i   1  to 2 ,  0.33 to 0.66 0.33 

3i   2  to 3  
0.66 to 1 0.34 

 varies as 0  to 3  
0.06  to 1 inner  & outer surface 0.94 

 

 

Table 2 

Material properties of layers of the composite hollow sphere. 

Layer  

Material properties   

1i   

(Aluminium) 

2 

(Copper) 

3 

(Iron) 

Thermal conductivity   /ik W mK  204.2 386 72.7 

Thermal diffusivity      2 /i m s  
684.18 10  6112.34 10  620.34 10  

Poisson’s ratio i  0.35 0.33 0.30 

Modulus of Elasticity  iE GPa  70 117 100 

Coefficient of thermal expansion  1/tia K  62.3 10  616.5 10   

Average conductivity  0 /k W mK                221 

Average thermal diffusivity  2
0 /m s         

672.29 10  

 

 

Table 3 

The dimensionless mechanical material properties of the layers of composite. 

Layer  

Material Properties   

1i   
 

2i   
 

3i   
 

 Thermal Conductivity   0/i ik k k  0.92 1.74 0.33 

Thermal diffusivity  0/i i    1.16 1.56 0.28 

Ratio of conductivity parameter

 
1

i
i

i

k

k




  
1 0.528   2 5.27    
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Table 4 

First 15 Eigen values obtained layer wise. 

im  m=1 2 3 4 5 6 7 8 9 10 11 

1m  1.4978 3,7256 8.7587 11.0230 17.0512 18.5606 19.9434 21.8516 23.5826 25.4256 27.2574 

2m  1.2916 3.2126 7.5528 9.5053 14.7035 16.0051 17.1975 18.8430 20.3357 21.9249 23.5045 

3m  3.0486 7.5830 17.8276 22.4362 34.7060 37.7782 40.5928 44.4768 48.0001 51.7513 55.4797 

im  m=12 13 14 15        

1m  28.6724 30.4880 35.1396 37.7836        

2m  24.7247 26.2903 30.3015 32.5814        

3m  58.3599 62.0563 71.5232 76.9048        

 

Temperature distribution  
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where, 
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Thermal stresses  
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where, 1,2,3i 
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Subjected to the conditions 

 

 , 0i    at 0   and 3 1    , 1,3i  ;
 

   , , 1i i i i     ,    2,3i 
                          

 (44) 
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Table 5 

Layer wise 15 Values of
 imA and imB . 

imA  m=1 2 3 4 5 6 7 8 9 10 11 

1mA  1 1 1 1 1 1 1 1 1 1 1 

2mA  -2.5154 -1.5685 -0.6153 3.3577 0.2204 -0.6682 -1.1711 -2.0915 -2.2473 -0.6599 -0.5753 

3mA  10.4452 4.1164 -2.9170 0-0794 -1.8274 0.4104 0.3430 1.9040 -2.9699 1.6762 -0.3901 

imA  m=12 13 14 15        

1mA  1 1 1 1        

2mA  -0.6126 -0.2947 -0.0983 -1.3637        

3mA  0.8751 -1.1074 0.7178 1.3113        

imB  m=1 2 3 4 5 6 7 8 9 10 11 

1mB  -11.9567 -4.7488 -1.8842 -1.4184 -0.7153 -0.5951 -0.4952 -0.3690 -0.2629 -0.1556 -0.0524 

2mB  -6.0651 -3.8177 -2.1769 3.5159 0.2204 -0.6682 -1.1711 -2.0915 -2.2473 -0.6599 -0.5753 

3mB  -4.0210 -15.7357 3.2544 -7.8540 0.7120 -0.4672 1.3765 -1.8062 1.2021 0.7498 -0.9541 

imB  m=12 13 14 15        

1mB  0.0265 0.1283 0.4073 0.5914        

2mB  -0.6126 -0.2947 -0.0983 -1.3637        

3mB  0.3117 -1.8962 0.0606 1.4317        

 

 

Table 6 

Layer wise values of , ,&s i s ia b  

i 1 2 3 

,s ia  -0.1756 -0.0927 -0.4886 

,s ib
 

2.9265 2.6738 3.3325 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Distribution of temperature versus radius for varying 0.Q  

 

In Fig. 2 the temperature distribution is shown along radial locations for 0Q =0.02, 0.04, 0.06 and a fixed time 

 =0.015. The heat source is a function of radius R & hence the source parameter increases along radius and 

accordingly the variation in the temperature distributions is observed. The temperature gradient varies in each layer 

because of the difference in the thermal conductivity coefficients which has been seen at radial positions. Internal 

Source is the only means by which the body getting heated. Since the inner boundary of multilayer is kept at zero 

temperature and convection at outer boundary to ambient at zero temperature. The graphs shows change in 

temperature from inner to outer. In Fig. 3 the variation is shown for varying time  = 0.005, 0.015 and 0.025 for 

fixed source 0Q =0.04. This graph shows that the layer has spectacular temperature variation with respect to time 

and satisfies boundary conditions.  
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Fig.3 

Distribution of Temperature versus radius with varying time 
.  

 

    In Fig. 4(a) and 4(b) the transient, radial and tangential stress distributions are shown along radial direction with 

varying values of heat source and time respectively. Fig. 4(a) shows that the transient radial stresses vanish on the 

inner and outer boundary surfaces of the multilayer hollow sphere as per induced mechanical boundary conditions. 

In observations it is found clearly that the stress increases along radial direction and spectacular changes are seen for 

different layers. The first layer shows compression which decreases on interface. The compression is large for lesser 

source parameter. Interior of the first layer is under compression and it decreases on its outer interface. There is a 

decrease with respect to source parameter. In second layer the nature of the stress function is same but it changes its 

sign from negative to positive and compression decreases while in third layer the variation for considered source 

parameter again decreases becomes zero on outer surface of multilayer as per assumption. It is observed that the 

inner surface of the Multilayer hollow sphere is under compression while outer surface shows tension. Fig. 4(b) 

shows the variation of Tangential stress distribution along radial direction. It is observed that the inner surface of the 

first layer means inner surface of the multilayer is under compression and changes to tension with respect to radius 

and this nature continues to tension on outer surface and changes from negative to positive. In Fig. 5(a) and 5 (b) the 

variation of radial and Tangential stress fields is shown foe different time parameter   for fixed value of 0Q and the 

nature is found to be same as 4(a) and 4(b). As expected the temperature and stress distribution exhibits significant 

jumps at all interfaces and these are due to the differences in a material properties. 
 

 
(a) 

 
(b) 

Fig.4 

Radial and Tangential stress distribution versus radius with varying heat source 0 0.02,0.04,0.06.Q   

  

 
(a) 

 
(b) 

Fig.5 

Radial and Tangential stress distribution versus radius with 0.005,0.015,0.025.     
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6    CONCLUSIONS 

The results and the calculations in the analysis can be summarised as follows; 

1. The transient thermoelastic problem involving a multilayered hollow sphere with internal heat generation is 

analyzed in this work. The analytical solutions are obtained for temperature and stress functions. 

2. The exact analytic solution for temperature distribution is obtained using separation of variable method by 

splitting the problem into homogeneous transient and nonhomogeneous steady state. The solution of 

homogeneous transient part is obtained in a series solution by eigen function expansion. In this 

inhomogeniety is due to internal heat source and initial temperature which function of radius. 

3. The transient thermoelastic response of a multilayer experiencing internal heat source is studied by using 

temperature function which is obtained earlier. 

4. The results were discussed numerically and graphically layer wise and observations are presented. The 

mathematical software MATLAB is used for the purpose.  
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