تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,622 |
تعداد مشاهده مقاله | 78,340,891 |
تعداد دریافت فایل اصل مقاله | 55,384,161 |
A New Iterative Method of Successive Approximation to Solve Nonlinear Urysohn Integral Equations by Haar Wavelet | ||
International Journal of Mathematical Modelling & Computations | ||
مقاله 2، دوره 10، 4 (Fall) - شماره پیاپی 40، اسفند 2020، صفحه 281-294 اصل مقاله (114.45 K) | ||
نوع مقاله: Full Length Article | ||
نویسندگان | ||
Manochehr Kazemi* 1؛ Vali Torkashvand2؛ Einollah Fathizade3 | ||
1Department of Mathematics, Ashtian Branch, Islamic Azad University, Ashtian, Iran | ||
2Department of Mathematics, Hamedan Branch, Islamic Azad University, Hamedan, Iran | ||
3Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran | ||
چکیده | ||
In this paper, a new method for calculating the numerical approximation of the nonlinear Urysohn integral equations is proposed based on Haar wavelets. Also, the convergence analysis and numerical stability of these method are discussed. Conducting numerical experiments confirm the theoretical results of the applied method and endorse the accuracy of the method. | ||
کلیدواژهها | ||
Integral equations؛ Haar wavelet؛ Lipschitz condition؛ Successive approximations | ||
آمار تعداد مشاهده مقاله: 467 تعداد دریافت فایل اصل مقاله: 230 |