Mathematical Analysis and its Contemporary Applications Volume 1, Issue 1, 2019, 62-66 doi: 10.30495/MACA.2019.679848

Cohen's factorization theorem for ternary Banach algebras

A. Jabbari

ABSTRACT. In this paper, we prove Cohen's factorization theorem for ternary Banach algebras.

1. Introduction

Ternary algebraic operations were considered in the 19th century by several mathematicians such as A. Cayley [3] who introduced the notion of cubic matrix which in turn was generalized by Kapranov, Gelfand and Zelevinskii in 1990 ([8]). The comments on physical applications of ternary structures can be found in [1, 9, 10, 12, 13].

A nonempty set G with a ternary operation $[.,.,.]: G \times G \times G \longrightarrow G$ is called a ternary groupoid and denoted by (G, [.,.,.]). The ternary groupoid (G, [.,.,.]) is called a ternary semigroup if the operation [.,.,.] is associative, i.e., if

$$[[x, y, z], u, v] = [x, [y, z, u], v] = [x, y, [z, u, v]]$$

holds for all $x, y, z, u, v \in G$. A ternary semigroup (G, [., ., .]) is a ternary group if for all $a, b, c \in G$, there are $x, y, z \in G$ such that

$$[x, a, b] = [a, y, b] = [a, b, z] = c,$$

which the elements x, y, z are uniquely determined (see [11]).

A ternary Banach algebra is a complex Banach space A, equipped with a ternary product $(x, y, z) \mapsto [x, y, z]$ of A^3 into A, which is associative in the sense that [[x, y, z], u, v] = [x, y, [z, u, v]] = [x, [y, z, u], v], and satisfy $||[x, y, z]|| \le ||x|| ||y|| ||z||$. An element $e \in A$ is an identity of A if x = [x, e, e] = [e, e, x] for all $x \in A$.

For ternary Banach algebra A, a set $U \times V$ is said to be an approximating set for A (U and V are bounded subsets of A) if for every $\epsilon > 0$, and every $a \in A$, there exist $u \in U, v \in V$ such that $||[u, v, a] - a|| < \epsilon$, $||[u, a, v] - a|| < \epsilon$, $||[a, u, v] - a|| < \epsilon$. In [7], the authors proved that the existing of an approximating set for a ternary

²⁰⁰⁰ Mathematics Subject Classification. 46H05.

Key words and phrases. approximate identity, approximating set, ternary Banach algebra.

Banach algebra A, implies existence of a bounded approximate identity for it ([7, 7]Theorem 2.1), in the other words, Altman's Theorem has been proved for ternary case. Some results on special derivations and homomorphisms are obtained in [5, 6].

Assume that A is a ternary Banach algebra, a bounded net (e_{α}, f_{α}) is a left bounded approximate identity for A if $\lim_{\alpha} [e_{\alpha}, f_{\alpha}, a] = a$ for all $a \in A$. Similarly, a bounded net (e_{α}, f_{α}) is a right bounded approximate identity for A if $\lim_{\alpha} [a, e_{\alpha}, f_{\alpha}] =$ a for all $a \in A$. Also, (e_{α}, f_{α}) is a middle bounded approximate identity for A if $\lim_{\alpha} [e_{\alpha}, a, f_{\alpha}] = a$ for all $a \in A$. A net (e_{α}, f_{α}) is a bounded approximate identity for A if (e_{α}, f_{α}) is a left, right and middle bounded approximate identity for A. If ternary Banach algebra A has a left and right bounded approximate identity, then it has a bounded approximate identity (see [7, Theorem 2.2]).

Let A be a Banach ternary algebra and X be a Banach space. Then X is called a ternary Banach A-module, if module operations $A \times A \times X \longrightarrow X$, $A \times X \times A \longrightarrow X$, and $X \times A \times A \longrightarrow X$ which are \mathbb{C} -linear in every variable. Moreover satisfy

- (1) $[[x, a, b]_X c, d]_X = [x, [a, b, c]_A, d]_X = [x, a, [b, c, d]_A]_X,$

- $\begin{array}{l} (2) \quad \begin{bmatrix} [a, x, b]_X, c, d \end{bmatrix}_X = \begin{bmatrix} a, [x, b, c]_X, d \end{bmatrix}_X = \begin{bmatrix} a, x, [b, c, d]_A \end{bmatrix}_X, \\ (3) \quad \begin{bmatrix} [a, b, x]_X, cd, \end{bmatrix}_X = \begin{bmatrix} a, [b, x, c]_X, d \end{bmatrix}_X = \begin{bmatrix} a, b, [x, c, d]_X \end{bmatrix}_X, \\ (4) \quad \begin{bmatrix} [a, b, c]_A, x, d \end{bmatrix}_X = \begin{bmatrix} a, [b, c, x]_X, d \end{bmatrix}_X = \begin{bmatrix} a, b, [c, x, d]_X \end{bmatrix}_X, \\ (5) \quad \begin{bmatrix} [a, b, c]_A, d, x \end{bmatrix}_X = \begin{bmatrix} a, [b, c, d]_A, x \end{bmatrix}_X = \begin{bmatrix} a, b, [c, d, x]_X \end{bmatrix}_X,$

for every $x \in X$ and all $a, b, c, d \in A$. Obviously, the ternary algebra A is a ternary A-module. A bounded approximate identity in A for X is a bounded net (e_{α}, f_{β}) in A such that $\lim_{\alpha} [x, e_{\alpha}, f_{\alpha}] = x$, $\lim_{\alpha} [e_{\alpha}, x, f_{\alpha}] = x$ and $\lim_{\alpha} [e_{\alpha}, f_{\alpha}, x] = x$ for all $x \in X$. For binary Banach algebra A, and for a fixed positive $\epsilon > 0$, if the Banach algebra A has a bounded approximate identity for X then every element $x \in \text{can be}$ written as x = ay where $a \in A$ and $y \in X$, and $||x - y|| < \epsilon$ (Cohen's factorization theorem, see [2, Theorem 10], pp. 61 or [4, Theorem 2.9.24]). We prove the ternary version of Cohen's factorization theorem for ternary Banach algebras with a different method.

2. Main Results

Let A be a ternary (complex) Banach algebra without identity. Then A^{\sharp} is the linear space $A \times \mathbb{C}$, where $(A \times \mathbb{C}) \times (A \times \mathbb{C}) \to (A \times \mathbb{C})$ or $A^{\sharp} \times A^{\sharp} \to A^{\sharp}$ together with

 $\left((a,\alpha),(b,\beta),(c,\gamma)\right)\longmapsto\left[(a,\alpha),(b,\beta),(c,\gamma)\right]_{{}_{A^{\sharp}}}$

which is associative in the sense that

$$\begin{split} \left[[(a,\alpha),(b,\beta),(c,\gamma)]_{A^{\sharp}},(x,\lambda),(y,\mu) \right]_{A^{\sharp}} &= \left[(a,\alpha),(b,\beta),[(c,\gamma),(x,\lambda),(y,\mu)]_{A^{\sharp}} \right]_{A^{\sharp}} \\ &= \left[(a,\alpha),[(b,\beta),(c,\gamma),(x,\lambda)]_{A^{\sharp}},(y,\mu) \right]_{A^{\sharp}}, \end{split}$$

where $(a, \alpha)(b, \beta) = (ab + \beta a + \alpha b, \alpha \beta)$ for every $a, b, c, x, y \in A$ and $\alpha, \beta, \gamma, \lambda, \mu \in \mathbb{C}$. We denote the identity of A^{\sharp} by e(=(0,1)), and we write $a + \alpha e$ and a for the

A. JABBARI

elements $[(a, \alpha), (0, 1), (0, 1)]_{A^{\sharp}}$ and $[(a, 0), (0, 1), (0, 1)]_{A^{\sharp}}$ of A^{\sharp} , respectively. By easy calculation one can show that A^{\sharp} satisfies

$$\|[(a,\alpha),(b,\beta),(c,\gamma)]_{A^{\sharp}}\| \le (\|a\| + |\alpha|)(\|b\| + |\beta|)(\|c\| + |\gamma|).$$

Now; define $A := \{ [(x, 0), (y, 0), (z, 0)] \mid x, y, z \in A \}$. Then

 $[(a, \alpha), (b, \beta), [(x, 0), (y, 0), (z, 0)]]$

is in A. By the above argued statements, we have the following result:

Proposition 2.1. Every non-unital ternary Banach algebra can be embedded in a unital ternary Banach algebra.

Now, we prove the main result of paper, which can be regarded as Cohen's factorization theorem for ternary Banach algebras.

Theorem 2.2. Let \mathcal{A} be a ternary Banach algebra and X be a ternary Banach A-module. If A possess a bounded approximate identity for X, then for all $x \in X$ and each $\epsilon > 0$, there exist $a \in A$ and $y \in X$ such that x = ay and $||x - y|| < \epsilon$.

PROOF. Let (e_{α}, f_{α}) be a bounded approximate identity for A, bounded by C > 1. Choose the positive numbers γ and β which satisfy the following conditions:

$$0 < \frac{\gamma}{1+\gamma} < \frac{1}{2C}, \quad \text{and} \quad 1 < \beta < 1+\gamma.$$
(1)

Let a be an arbitrary element in A such that $||z|| \leq 1$. The above mentioned conditions imply that $\frac{1}{C^n} ||[e_\alpha, f_\alpha, z]||^n < 1$, for $n \geq 1$. Therefore

$$(2^{n}(\gamma(1+\gamma)^{-1})^{n} || [e_{\alpha}, f_{\alpha}, z] ||^{n}) < \frac{1}{C^{n}} || [e_{\alpha}, f_{\alpha}, z] ||^{n} < 1,$$

and thereby we have

$$(\gamma(1+\gamma)^{-1})^n || [e_\alpha, f_\alpha, z] ||^n < \frac{1}{2^n} \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

Now, suppose that $S_n = \sum_{i=0}^n (\gamma(1+\gamma)^{-1} [e_\alpha, f_\alpha, z])^i$. Then

$$\begin{aligned} \|S_{n+1} - S_n\| &= \|(\gamma(1+\gamma)^{-1})^n [e_\alpha, f_\alpha, z]^n\| \le (\gamma(1+\gamma)^{-1})^{n+1} \|[e_\alpha, f_\alpha, z]\|^{n+1} \\ &\le \frac{1}{2^{n+1}} \longrightarrow 0, \end{aligned}$$

as $n \to \infty$. This means that (S_n) is a Cauchy sequence. Thus, the series $\sum_{i=0}^{\infty} (\gamma(1+\gamma)^{-1}[e_{\alpha}, f_{\alpha}, z])^i$ converges in A. Then $([e, e, e] + \gamma[e, e, e] - \gamma[e_{\alpha}, f_{\alpha}, e])$ is invertible in A^{\sharp} , and we have

$$([e, e, e] + \gamma[e, e, e] - \gamma[e_{\alpha}, f_{\alpha}, e])^{-1} = (1 + \gamma)^{-1}([e, e, e] - \frac{\gamma}{1 + \gamma}[e_{\alpha}, f_{\alpha}, e])^{-1}$$
$$= (1 + \gamma)^{-1} \sum_{i=0}^{\infty} (\gamma(1 + \gamma)^{-1}[e_{\alpha}, f_{\alpha}, e])^{i}.$$

So,

$$\|([e, e, e] + \gamma[e, e, e] - \gamma[e_{\alpha}, f_{\alpha}, e])^{-1}\| \le \sum_{i=0}^{\infty} \frac{\gamma(1+\gamma)^{-1}}{2^{n}} < 2.$$
(2)

Assume that $[e_n, f_n, e] = [e_{\alpha_n}, f_{\alpha_n}, e]$ such that $\|\gamma[e, e, x] - \gamma[e_n, f_n, x]\| < \epsilon/2^n$, $n \in \mathbb{N}$. Define $t_n = ([e, e, e] + \gamma[e, e, e] - \gamma[e_1, f_1, e]) \cdots ([e, e, e] + \gamma[e, e, e] - \gamma[e_n, f_n, e])$. Since every $([e, e, e] + \gamma[e, e, e] - \gamma[e_j, f_j, e])$ is invertible for $1 \leq j \leq n, t_n$ is invertible. Now, set $a_n = t_n^{-1} - ([e, e, e] + \gamma[e, e, e])^{-n} \in A$ and $y_n = [t_n, e, x]_X$. Choose an element $(e_{n+1}, f_{n+1}) \in A \times A$ such that

$$\|[e_{n+1}, f_{n+1}, a_n] - a_n\| < \frac{1}{\beta^n} \quad \text{and} \quad \|\gamma[t_n, e, x]_X - \gamma[t_n, e_{n+1}, f_{n+1}x]_X\|_X < \frac{1}{2^{n+1}}.$$
(3)

By definition of a_n , relations (1), (2) and (3), we have

$$\begin{aligned} \|a_{n+1} - a_n\| &= \|([e, e, e] + \gamma[e, e, e] - \gamma[e_{n+1}, f_{n+1}, e])^{-1}a_n \\ &+ \left(([e, e, e] + \gamma[e, e, e] - \gamma[e_{n+1}, f_{n+1}, e])^{-1} - ([e, e, e] + \gamma[e, e, e])^{-1}\right) \\ &\times ([e, e, e] + \gamma[e, e, e])^{-n} \\ &- ([e, e, e] + \gamma[e, e, e] - \gamma[e_{n+1}, f_{n+1}, e])^{-1}[e_{n+1}, f_{n+1}, a_n] \\ &+ ([e, e, e] + \gamma[e, e, e] - \gamma[e_{n+1}, f_{n+1}, e])^{-1}[e_{n+1}, f_{n+1}, a_n] \\ &- [e_{n+1}, f_{n+1}, a_n] + [e_{n+1}, f_{n+1}, a_n] - a_n\| \\ &\leq \|([e, e, e] + \gamma[e, e, e] - \gamma[e_{n+1}, f_{n+1}, e])^{-1} - ([e, e, e] + \gamma[e, e, e])^{-1}\| \\ &+ \|([e, e, e] + \gamma[e, e, e] - \gamma[e_{n+1}, f_{n+1}, e])^{-1} - ([e, e, e] + \gamma[e, e, e])^{-1}\| \\ &\times \|([e, e, e] + \gamma[e, e, e])^{-n}\| \\ &+ \|([e, e, e] + \gamma[e, e, e] - \gamma[e_{n+1}, f_{n+1}, e])^{-1} - [e, e, e]\|\|[e_{n+1}, f_{n+1}, a_n]\| \\ &+ \|([e, e, e] + \gamma[e, e, e] - \gamma[e_{n+1}, f_{n+1}, e])^{-1} - [e, e, e]\|\|[e_{n+1}, f_{n+1}, a_n]\| \\ &+ \|([e_{n+1}, f_{n+1}, a_n] - a_n\| \\ &< \frac{2}{\beta^n} + \frac{M}{\beta^n} + \frac{N}{\beta^n} + \frac{1}{\beta^n} \longrightarrow 0 \quad \text{as} \quad n \longrightarrow \infty, \end{aligned}$$

where $M = \|([e, e, e] + \gamma[e, e, e] - \gamma[e_{n+1}, f_{n+1}, e])^{-1} - ([e, e, e] + \gamma[e, e, e])^{-1}\|$ and $N = \|([e, e, e] + \gamma[e, e, e] - \gamma[e_{n+1}, f_{n+1}, e])^{-1} - [e, e, e]\|$. Then by (4), we conclude that (a_n) is a Cauchy sequence. Therefore there exists an element $a \in A$ such that $a = \lim_n a_n$ (it is clear that $t_n^{-1} \longrightarrow a$). By the above obtained results it is easy to see that (y_n) is a Cauchy sequence in X. Thereupon, there exists $y \in X$ such that $y = \lim_n y_n$. By gathering the obtained results, we have x = ay and $||x-y|| < \epsilon$. \Box

Corollary 2.3. Let \mathcal{A} be a ternary Banach algebra with a left bounded approximate set. Then, for all $a \in A$ and each $\epsilon > 0$, there exist $b, c \in A$ such that a = bcand $||a - c|| < \epsilon$.

A. JABBARI

References

- V. Abramov, R. Kerner, O. Liivapuu and S. Shitov, Algebras with ternary law of composition and their realization by cubic matrices, Journal of Generalized Lie Theory and Applications, 3(2)(2009), 77–94.
- [2] F. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, Berlin, 1973.
- [3] A. Cayley, On the 34 concomitants of the ternary cubic, Amer. J. Math., 4(1-4)(1881), 1–15.
- [4] H. G. Dales, Banach algebras and automatic continuity, London Math. Society Monographs, 24, Clarendon Press, Oxford, 2000.
- [5] M. Eshaghi Gordji, R. Farrokhzad and S. A. R. Hosseinioun, Hyers-Ulam stability of ternary (σ, t, ζ) -derivations on C^{*}-ternary algebras, J. Math. Phys. Anal. Geom., 8(1)(2012), 3-20.
- [6] M. Eshaghi Gordji, A. Jabbari, A. Ebadian and S. Ostadbashi, Automatic continuity of 3homomorphisms on ternary Banach algebras, Inter. J. Geom. Meth. Mod. Phys., 10(10)(2013), 1320013.
- [7] M. Eshaghi Gordji, A. Jabbari and G. H. Kim, Approximate identity in ternary Banach algebras, Abs. Appl. Anal., (2012), Article ID 386785, 6 pages.
- [8] M. Kapranov, I. M. Gelfand and A. Zelevinskii, *Discrimininants*, Resultants and Multidimensional Determinants, Birkhauser, Berlin, 1994.
- [9] R. Kerner, Ternary and non-associative structures, Inter. J. Geom. Meth. Modern Phys., 5(8)(2008), 1265–1294.
- [10] R. Kerner, The cubic chessboard, Geom. Phys. Class. Quantum Grav., 14(1A)(1997), 203-225.
- [11] E. L. Post, *Polyadic groups*, Trans. Amer. Math. Soc., 48(1940), 208-350.
- [12] G. L. Sewell, Quantum mechanics and its emergent macrophysics, Princeton Univ. Press, Princeton, NJ, 2002.
- [13] H. Zettl, A characterization of ternary rings of operators, Adv. Math., 48(1993), 117-143.

Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran

Email address: jabbari_al@yahoo.com