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In this paper, we introduce the concept strong algebrability of certain 𝐶∗ 

algebras generated by finite generators. In fact, using Gelfand theorem, we 

identify the members of the 𝐶∗ algebra generated by one element, with the 

continuous functions on its spectrum, and use some recent result for strong 

algebrability for functions spaces. Moreover, we introduce the new concept 

unitable elements in unital 𝐶∗ algebras, and then we express our main result 

for this kind of elements. In fact, the 𝐶∗ subalgebra generated by a non unitable 

element in a 𝐶∗ algebra is strongly 𝑐 algebrable. As the last result in this paper, 

we show 2𝑐 strong algebrability of direct sums of 𝐶∗ algebras, using non 

unitable elements of them.  

 

1 Introduction 

The concepts of lineability and algebrability have been investigated for several kind of spaces. 

Recently, there were published two surveys in this topic, that contain several examples. First, we 

recall the definition of these concepts, which its origins are in the works of R.M. Aron, V.I. Gurariy, 

D. Perez-Garcia, J.B. Seoane-Sepulveda. 

 

Definition 1.1 Let 𝜅 be a cardinal number. 

(1) Let L be a vector space and a set 𝐴 ⊆ 𝐿. We say that A is 𝜅-lineable if 𝐴 ∪ {0} contains a 𝜅-

dimensional vector space; 

(2) Let L be a Banach space and a set 𝐴 ⊆ 𝐿. We say that A is spaceable if 𝐴 ∪ {0} contains an 

infinite dimensional closed vector space; 

(3) Let L be a linear commutative algebra and a set 𝐴 ⊆ 𝐿. We say that A is 𝜅-algebrable if  A∪{0} 

contains a 𝜅-generated algebra B (i.e. the minimal system of generators of B has cardinality 𝜅). 

https://dorl.net/dor/20.1001.1.25382217.2021.15.2.4.5


Strong Algebrability of  𝐶∗ algebras  Soleimani, A., 
 

 

 

 
2021, Volume 15, No.2 

 

[2] 
 

Theory of Approximation and Applications 

 

 

 

Moreover, A. Bartoszewicz and S. Glab in [8] went further and asked for existence of free 

structures inside some set 𝐴 ∪ {0}. They introduced the notion of strong algebrability. 

 

Definition 1.2 Let 𝜅 be a cardinal number. Let L be a linear commutative algebra and a set A ⊆ 

L. We say that A is strongly 𝜅-algebrable if 𝐴 ∪ {0} contains a 𝜅-generated algebra B that is 

isomorphic with a free algebra (denote by 𝑋 =  {𝑥𝛼 ∶  𝛼 <  𝜅} the set of generators of this free 

algebra). 

 

Note that every free algebra is a structure like a free group, that there is no non trivial relation 

between its generators. Consequently, every member of a free algebra has the following form 

𝒙𝜶𝟏

𝒌𝟏 … 𝒙𝜶𝒏

𝒌𝒏  

Which is called a "word". Here, 𝑥𝛼 's denotes the generators of X . 

It is trivial that for any cardinal number 𝜅, the following implications hold. 

𝜅 strong algebrability ⇒ 𝜅 algebrability ⇒ 𝜅 lineability. 

Moreover, since every infinite dimensional Banach space has a linear base of cardinality c, then 

spaceability ⇒ 𝔠 lineability. 

 

In the rest of this paper, the concept "exponential like" function is a key tool for our aims. 

 

Definition 1.3 We say that a function 𝑓: ℝ →  ℝ is exponential-like (of rank 𝑚) whenever f is 

given by  

𝑓(𝑥) = ∑ 𝛼𝑖𝑒
𝛽𝑖𝑥

𝑚

1
 

for some distinct nonzero real numbers 𝛽1, ..., 𝛽𝑚 and some nonzero real numbers 𝛼1, ..., 𝛼𝑚. We 

will also consider exponential-like functions (of the same form) with the domain [0, 1]. 

 

Note that the set of exponential-like functions form an algebra in the space of real functions. In 

fact, if 𝑓, 𝑔 are two exponential-like functions, then 𝑓𝑔 is also an exponential-like function.  

To see this, let 
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𝑓(𝑥) = ∑ 𝛼𝑖𝑒𝛽𝑖𝑥
𝑚

1
        ,        𝑔(𝑥) = ∑ 𝛼𝑗𝑒𝛽𝑗𝑥

𝑛

1
 

Then we have 

(𝑓𝑔)(𝑥) = ∑ ∑ 𝛼𝑖𝛼𝑗𝑒(𝛽𝑖+𝛽𝑗)𝑥
𝑛

1

𝑚

1
 

There is a very useful criterion for characterization strong algebrability of some families of certain 

functions. 

Theorem 1.1 Let 𝐹 ⊆ ℝ[0,1] and assume that there exists a function 𝑔 ∈ 𝐹 such that 𝑓𝑜𝑔 ∈ 𝐹 ∪

{0}. For every exponential-like function 𝑓 ∶  ℝ →  ℝ. Then 𝐹 is strongly 𝔠-algebrable. More exactly, 

if 𝐻 ⊆  ℝ is a set of cardinality 𝑐 and linearly independent over the rationals Q, then 𝑒𝑥𝑝𝑜(𝑟𝑓), 

𝑟 ∈ 𝐻, are free generators of an algebra contained in 𝐹 ∪ {0}. 

 

In the following examples, we see the application of this theorem for some certain spaces. 

 

Example 1.1 Let C(ℝ) denote the set of continuous real functions. It is clear that every 

exponential-like function is continuous, moreover it is clear that the composition of two 

continuous functions is also continuous. So, the condition of the theorem1.1 is trivially hold, and 

consequently, the space C(ℝ) is strongly 𝑐-algebrable. 

 

Example 1.2 Let 𝐶𝑛(ℝ) denote the set of continuously n-times differentiable real functions. It is 

clear that every exponential-like function is n-times differentiable, moreover it is clear that the 

composition of two n-times differentiable functions is also n-times differentiable. So, the 

condition of the theorem1.1 is trivially hold, and consequently, the space 𝐶𝑛(ℝ) is strongly 𝑐 

algebrable. 

 

2 Strong algebrability of finitely generated 𝑪∗ algebra 

Definition 2.1 A 𝐶∗ algebra, is a Banach algebra A, which equipped with a mapping 

∗∶ 𝐴 → 𝐴 

With the following properties; 
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i. 𝑥∗∗ = 𝑥 

ii. (𝑥 + 𝑦)∗ = 𝑥∗ + 𝑦∗ 

iii. (𝑥𝑦)∗ = 𝑦∗𝑥∗ 

iv. (𝛼𝑥 + 𝛽𝑦)∗ = �̅�𝑥∗ + �̅�𝑦∗ 

v. ‖𝑥∗𝑥‖ = ‖𝑥‖2 

For every x, y in A and every complex numbers 𝛼, 𝛽. Note that the last property is the most 

important property. It is not difficult to see that ‖𝑥∗‖ = ‖𝑥‖ , i.e. the operation * is an isometric 

isomorphism. 

The set of complex number is the simplest 𝐶∗ algebra, with the operation 𝑧∗ = 𝑧̅. 

Example 2.1 Let H be a Hilbert space. Denote the set of bounded linear operators on H by B(H). 

For any S in B(H), there is a unique T in B(H) such that for any x, y in H, 

〈𝑆𝑥, 𝑦〉 = 〈𝑥, 𝑇𝑦〉 

In this case, the operator T is called the adjoint operator of S and is denoted by 𝑆∗. so 

〈𝑆𝑥, 𝑦〉 = 〈𝑥, 𝑆∗𝑦〉 

It is well known that B(H) with this involution is a 𝐶∗ algebra. 

Definition 2.2 Let A be a 𝐶∗ algebra, and assume that 𝑎1, … , 𝑎𝑛 are elements of A.The 𝐶∗ algebra 

generated by 𝑎1, … , 𝑎𝑛 in A is the smallest 𝐶∗ algebra contained in A which contains 𝑎1, … , 𝑎𝑛 . We 

denote this 𝐶∗ algebra by 𝐶∗(𝑎1, … , 𝑎𝑛) . 

There are some special cases for elements of a 𝐶∗ algebra; here we see some of them; 

i. An element x is called self adjoint if 𝑥∗ = 𝑥 . 

ii. An element x is called normal if 𝑥∗𝑥 = 𝑥𝑥∗ . 

iii. An element x is called unitary if 𝑥∗𝑥 = 1 = 𝑥𝑥∗ . 

iv. An element x is called projection if it is self adjoint and idempotent. i.e. we have 𝑥∗ =

𝑥 , 𝑥2 = 𝑥 . 

v. An element x is called positive if there exists an element y such that = 𝑦∗𝑦 . 

For normal elements, we can say that the members of 𝐶∗(𝑎) has the following form 
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𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅ {𝑎𝑚(𝑎∗)𝑛 ∶  𝑚 , 𝑛 𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟𝑠} 

Definition 2.3 Let A be a 𝐶∗ algebra, and assume that 𝑎 is an element of  A . The spectrum of 𝑎 

is defined as the following set in complex numbers 

𝜎(𝑎) = {𝛾 ∶ 𝑎 − 𝛾1 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒 𝑖𝑛 𝐴}, 

where 1 denotes the identity element of A . 

Now, we express a key theorem in our paper, which is called Gelfand theorem; 

Theorem 2.1 (E. Gelfand) Let A be a 𝐶∗ algebra, and assume that 𝑎 is a normal element in A. 

The 𝐶∗ algebra generated by 𝑎 in A is corresponding to the set of continuous functions over the 

spectrum of  𝑎. In other words, we have 

𝐶∗(𝑎)~𝐶(𝜎(𝑎)), 

where 𝐶(𝜎(𝑎)) denotes the set of continuous functions with domain 𝜎(𝑎) . 

In fact, this theorem asserts that the element 𝑎 is corresponding to the identity map, i.e. 

𝑎 ~ 𝑓(𝑥) = 𝑥, 

Moreover 

𝑎∗ ~ 𝑓(𝑥) = �̅�, 

And since the Gelfand map is an isometric isomorphism, we conclude that every polynomial 

𝑓(𝑥) = ∑ 𝑎𝑖𝑥
𝑚𝑖�̅�𝑛𝑖 ,

𝑁

1
 

Is corresponding to the element 

∑ 𝑎𝑖𝑎
𝑚𝑖(𝑎∗)𝑛𝑖 ,

𝑁

1
 

Gelfand theorem is a key theorem in the theory of 𝐶∗ algebras, and has many consequences.  

As an useful consequence of Gelfand theorem, we have the following result; 
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Theorem 2.2 Let A be a 𝐶∗ algebra, and assume that 𝑎 is an arbitrary element in A. The set of 

continuous functions over the spectrum of 𝑎 can be imbedded in the 𝐶∗ algebra generated by 𝑎 in 

A. in other words, we have an onto map   

𝐶∗(𝑎) → 𝐶(𝜎(𝑎)) 

This map is one to one if 𝑎 is a normal. For example, both of two elements 

𝑎∗𝑎        ,        𝑎𝑎∗ 

Are mapped to the same function (𝑥) = �̅�𝑥 . 

Here 𝐶(𝜎(𝑎)) denotes the set of continuous functions with domain (𝑎) . 

Theorem2.3. Let A be a 𝐶∗ algebra, and assume 𝑥 is an arbitrary element in A. Let 𝑓, 𝑔 be two 

analytic functions over (𝑥) .  then the elements 𝑓(𝑥), 𝑔(𝑥) commutes, i.e. 

𝑓(𝑥)𝑔(𝑥) = 𝑔(𝑥)𝑓(𝑥), 

Proof. Since 𝑓, 𝑔 are analytic, they have suitable Taylor series over (𝑎) . assume that 

𝑓(𝑥) = ∑ 𝛼𝑛𝑥𝑛
∞

0
        ,        𝑔(𝑥) = ∑ 𝛽𝑛𝑥𝑛

∞

0
 

Are Taylor series corresponding to 𝑓, 𝑔, respectively. Therefore 

𝑓(𝑥)𝑔(𝑥) = (∑ 𝛼𝑛𝑥𝑛
∞

0
) (∑ 𝛽𝑛𝑥𝑛

∞

0
) = ∑ (∑ (𝛼𝑖𝛽𝑗)

𝑖+𝑗=𝑛
) 𝑥𝑛,

∞

0
 

A similar calculations show that 

𝑔(𝑥)𝑓(𝑥) = (∑ 𝛽𝑛𝑥𝑛
∞

0
) (∑ 𝛼𝑛𝑥𝑛

∞

0
) = ∑ (∑ (𝛼𝑖𝛽𝑗)

𝑖+𝑗=𝑛
)𝑥𝑛

∞

0
, 

As claimed. 

The following theorem is well known in the theory of 𝐶∗ algebras. 

Theorem 2.4 Let A be a 𝐶∗ algebra, and assume 𝑎, 𝑏 are arbitrary elements in A. If 𝑒𝑥𝑝(𝑎), 𝑒𝑥𝑝(𝑏) 

commutes, then 
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𝑒𝑥𝑝(𝑎)𝑒𝑥𝑝(𝑏) = 𝑒𝑥𝑝(𝑎 + 𝑏). 

 

Corollary 2.1 Since the exponential function is analytic everywhere and entire, we have 

𝑒𝑥𝑝(𝑟1𝑎)𝑘𝑖1𝑒𝑥𝑝(𝑟2𝑎)𝑘𝑖2 … exp(𝑟𝑛𝑎)𝑘𝑖𝑛 = 𝑒𝑥𝑝 (∑ 𝑟𝑗𝑘𝑖𝑗

𝑛

1
𝑎). 

Theorem 2.5 Let A be a 𝐶∗ algebra, and assume 𝑎 is a normal element in A. in this case, the 𝐶∗ 

algebra generated by 𝑎 is strongly 𝑐 algebrable. 

Proof. Consider a set H of cardinality 𝔠, such that it is linearly independent over ℚ. 

By the Gelfand theorem, we have that {𝑒𝑥𝑝(𝑟𝑎) ∶  𝑟 ∈  𝐻}  ⊆  𝐶∗(𝑎). In fact, the element 

𝑒𝑥𝑝(𝑟𝑎), 

in 𝐶∗(𝑎) is corresponded to the function in 𝜎(𝑎).  

To show that it is a set of free generators, consider n ∈ N and a non zero polynomial P in 𝑛 variables 

without a constant term. The function given by 

 𝑎 → 𝑃(𝑒𝑥𝑝(𝑟1𝑎), 𝑒𝑥𝑝(𝑟2𝑎), . . . , 𝑒𝑥𝑝(𝑟𝑛𝑎)), 

is of the form 

 

∑ 𝛼𝑖𝑒𝑥𝑝(𝑟1𝑎)𝑘𝑖1𝑒𝑥𝑝(𝑟2𝑎)𝑘𝑖2 … 𝑒𝑥𝑝(𝑟𝑛𝑎)𝑘𝑖𝑛

𝑚

1
= ∑ 𝛼𝑖𝑒𝑥𝑝(∑ 𝑟𝑗𝑘𝑖𝑗

𝑛

1
𝑎)

𝑚

1
, 

 

where 𝛼1, … , 𝛼𝑚 are nonzero real numbers and the matrix [𝑘𝑖𝑗] of nonnegative integers has distinct 

nonzero rows. 

Since H is linearly independent over ℚ, we conclude that the set 

{𝑒𝑥𝑝(𝑟𝑎): 𝑟 ∈  𝐻}, 

is a set of free generator for an algebra contained in 𝐶∗(𝑎). In fact, if there is a non trivial relation 

between its members, we must have for example 

𝑒𝑥𝑝(𝑟1𝑎)𝑘1𝑒𝑥𝑝(𝑟2𝑎)𝑘2 … 𝑒𝑥𝑝(𝑟𝑛𝑎)𝑘𝑛 = 1 
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Which 1 denotes the identity element of A . This implies that 

𝑒𝑥𝑝 (∑ 𝑟𝑗𝑘𝑗

𝑛

1
𝑎) = 1. 

Or equivalently 

∑ 𝑟𝑗𝑘𝑗

𝑛

1
= 0. 

Since 𝑟𝑗′𝑠 are linearly independent, we conclude that 𝑘𝑗 = 0 . This means that there is no non trivial 

relation between elements 

𝑒𝑥𝑝(𝑟1𝑎), … , 𝑒𝑥𝑝(𝑟𝑛𝑎) 

And this completes the proof.                                                                                                   ∎ 

Corollary 2.2 Every finitely generated 𝐶∗ algebra is strong 𝑐 algebrable. 

Proof. Denote by 𝐶∗(𝑎1, … , 𝑎𝑛) the 𝐶∗ algebra generated by 𝑎1, … , 𝑎𝑛 . It is trivial that 

𝐶∗(𝑎1) ⊆  𝐶∗(𝑎1, … , 𝑎𝑛). 

So, the strong algebrability of 𝐶∗(𝑎1) implies the same for 𝐶∗(𝑎1, … , 𝑎𝑛) . 

 

3    Unitable elements in 𝑪∗ algebras 

In this section, we first introduce the new concept unitable elements in unital 𝐶∗ algebras, and 

then we express our main result for this kind of elements. 

Definition. Let A be a unital 𝐶∗ algebra and 𝑎 be an element in A . in this case we say 𝑎 is unitable 

if there is a non zero real number 𝛼 such that 𝑎𝛼 = 1 . The set of unitable elements of A is denoted 

by unit(A) .  Therefore 

𝑢𝑛𝑖𝑡(𝐴) = {𝑎 ∶ 𝑎𝜖𝐴  ,   ∃𝛼 ≠ 0    𝑎𝛼 = 1} 

For more convince, we may assume that 𝑎 is positive. In fact, we consider positive unitable . 
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Example. Consider the set of complex number as the simplest 𝐶∗ algebra. In this 𝐶∗ algebra, the 

set of unitable elements is exactly the unit circle. In fact, if  𝑧 is a unitable complex number, then 

𝑧𝛼 = 1 for some suitable  . now, consider the polar decomposition of 𝑧 , 

𝑧 = 𝑟𝑒𝑖𝜃 

So 

𝑧𝛼 = 𝑟𝛼𝑒𝑖𝛼𝜃 = 1 

Hence 𝑟𝛼 = 1 and = 1 . Since r is a positive number. Therefore = 𝑒𝑖𝜃 . 

And so 𝑧 belongs to the unit circle. 

Conversely, it is clear that every members of the unit circle as 𝑒𝑖𝜃 is unitable, since for =
2𝜋

𝜃
 , we 

have 

𝑧𝛼 = 𝑒𝑖𝛼𝜃 = 𝑒2𝜋𝑖 = 1 

Lemma. Let A be a unital 𝐶∗ algebra and 𝑎1, … , 𝑎𝑛 be arbitrary elements in A . Then, the element 

[
𝑎1 … 0
⋮ ⋱ ⋮
0 … 𝑎𝑛

] 𝜖𝐴 ⊕ … ⊕ 𝐴, 

is unitable, if and only all 𝑎1, … , 𝑎𝑛 are unitable. 

Proof. If the matricial element 

[
𝑎1 … 0
⋮ ⋱ ⋮
0 … 𝑎𝑛

], 

is unitable, then for some suitable 𝛼 we have 

[
𝑎1 … 0
⋮ ⋱ ⋮
0 … 𝑎𝑛

]

𝛼

= [
1 … 0
⋮ ⋱ ⋮
0 … 1

]. 

So all 𝑎1, … , 𝑎𝑛 are unitable. 
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Conversely, assume that all 𝑎1, … , 𝑎𝑛 are unitable. So, there are 𝛼1, … , 𝛼𝑛 such that 

𝑎1
𝛼1 = 1 , … , 𝑎𝑛

𝛼𝑛 = 1. 

Therefore, for = 𝛼1 … 𝛼𝑛 , we have 

[
𝑎1 … 0
⋮ ⋱ ⋮
0 … 𝑎𝑛

]

𝛼

= [
𝑎1 … 0
⋮ ⋱ ⋮
0 … 𝑎𝑛

]

𝛼1…𝛼𝑛

= [
𝑎1

𝛼1…𝛼𝑛 … 0
⋮ ⋱ ⋮
0 … 𝑎𝑛

𝛼1…𝛼𝑛

] = [
1 … 0
⋮ ⋱ ⋮
0 … 1

] .                ∎ 

A slight modification in the proof of Therom 2.5 will give the following theorem. 

Theorem 3.1 Let A be a unital  𝐶∗ algebra, and assume 𝑎 is a non unitable element in A. In this 

case, the 𝐶∗ algebra generated by 𝑎 is strongly 𝑐 algebrable. 

Corollary 3.1 Every finitely generated 𝐶∗ algebra whit at least one non unitable generator is 

strong 𝑐 algebrable. 

Proof. Denote by 𝐶∗(𝑎1, … , 𝑎𝑛) the 𝐶∗ algebra generated by 𝑎1, … , 𝑎𝑛 . Assume that 𝑎1 is non 

unitable. It is trivial that 𝐶∗(𝑎1)  ⊆  𝐶∗(𝑎1, … , 𝑎𝑛) . 

So, the strong algebrability of 𝐶∗(𝑎1) implies the same for 𝐶∗(𝑎1, … , 𝑎𝑛) . 

Example 3.2 Let A be a unital 𝐶∗ algebra and 𝑎1, … , 𝑎𝑛 be arbitrary elements in A such that at 

least one of them is non unitable. Then, the 𝐶∗ algebra generated by the element 

[
𝑎1 … 0
⋮ ⋱ ⋮
0 … 𝑎𝑛

] 

Is strong 𝑐 algebrable in ⊕ … ⊕ 𝐴 . In fact, in this case, this element is non unitable, so we can 

apply previous theorem about it. 

 

4    𝟐𝒄 strong algebrability of direct sums of 𝑪∗ algebras 

Theorem. Let 𝐴𝛼 be a uncountable collection of unital 𝐶∗ algebras. Then the 𝐶∗ algebra 

⊕𝛼𝜖𝐼 𝐴𝛼  
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Is strongly 2𝑐 algebrable. 

Proof. Let 𝑎𝛼 be a non unitable element in 𝐴𝛼 . Consider the following collection 

{𝑑𝑖𝑎𝑔(𝑎𝛼
𝑟𝛼) ∶  𝑟𝛼}, 

We claim that this collection is a basis for a free subalgebra of ⊕𝛼𝜖𝐼 𝐴𝛼 . To this aim, consider the 

following members 

{𝑑𝑖𝑎𝑔 (𝑎𝛼
𝑟𝛼

1

) , 𝑑𝑖𝑎𝑔 (𝑎𝛼
𝑟𝛼

2

) , … , 𝑑𝑖𝑎𝑔 (𝑎𝛼
𝑟𝛼

𝑛

)}, 

Assume that there is a nontrivial relation between them 

(𝑑𝑖𝑎𝑔 (𝑎𝛼
𝑟𝛼

1

))
𝛽1

(𝑑𝑖𝑎𝑔 (𝑎𝛼
𝑟𝛼

2

))
𝛽2

… (𝑑𝑖𝑎𝑔 (𝑎𝛼
𝑟𝛼

𝑛

))
𝛽𝑛

= 1, 

Therefore 

𝑑𝑖𝑎𝑔 (𝑎𝛼
𝛽1𝑟𝛼

1

) 𝑑𝑖𝑎𝑔 (𝑎𝛼
𝛽2𝑟𝛼

2

) … 𝑑𝑖𝑎𝑔 (𝑎𝛼
𝛽𝑛𝑟𝛼

𝑛

) = 1, 

Or 

𝑑𝑖𝑎𝑔 (𝑎𝛼
𝛽1𝑟𝛼

1

𝑎𝛼
𝛽2𝑟𝛼

2

… 𝑎𝛼
𝛽𝑛𝑟𝛼

𝑛

) = 1, 

Or 

𝑑𝑖𝑎𝑔 (𝑎𝛼
𝛽1𝑟𝛼

1+𝛽2𝑟𝛼
2+⋯+𝛽𝑛𝑟𝛼

𝑛

) = 1, 

Since the identity element in ⊕𝛼𝜖𝐼 𝐴𝛼 has the form 

1⊕𝛼𝜖𝐼𝐴𝛼
= 𝑑𝑖𝑎𝑔(1𝐴𝛼

), 

We conclude that 

𝑑𝑖𝑎𝑔 (𝑎𝛼
𝛽1𝑟𝛼

1+𝛽2𝑟𝛼
2+⋯+𝛽𝑛𝑟𝛼

𝑛

) = 𝑑𝑖𝑎𝑔(1𝐴𝛼
), 

Therefore 

𝑎𝛼
𝛽1𝑟𝛼

1+𝛽2𝑟𝛼
2+⋯+𝛽𝑛𝑟𝛼

𝑛

= 1𝐴𝛼
, 
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Since 𝑎𝛼 is a non unitable element of 𝐴𝛼 , we conclude that 

𝛽1𝑟𝛼
1 + 𝛽2𝑟𝛼

2 + ⋯ + 𝛽𝑛𝑟𝛼
𝑛 = 0 

Therefore 

𝛽1 = 0    ,    𝛽2 = 0    ,   …    ,    𝛽𝑛 = 0 

Therefore, this collection is a basis for a free subalgebra of ⊕𝛼𝜖𝐼 𝐴𝛼 . Finally, we assert that the 

cardinal of 

{𝑑𝑖𝑎𝑔(𝑎𝛼
𝑟𝛼) ∶  𝑟𝛼} 

is equal to 2𝑐 .                                                                                                                           ∎ 
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