تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,622 |
تعداد مشاهده مقاله | 78,340,832 |
تعداد دریافت فایل اصل مقاله | 55,384,121 |
A MAPE-K Loop Based Model for Virtual Machine Consolidation in Cloud Data Centers | ||
Journal of Computer & Robotics | ||
مقاله 4، دوره 13، شماره 2، اسفند 2020، صفحه 33-60 اصل مقاله (1.35 M) | ||
نویسندگان | ||
Negin Najafizadegan1؛ Eslam Nazemi* 2؛ Vahid Khajehvand1 | ||
1Islamic Azad University, Qazvin Branch, Qazvin, Iran | ||
2Shahid Beheshti University | ||
چکیده | ||
Today, with the rise of cloud data centers, power consumption has increased and cloud infrastructure management has become more complex. On the other hand, meeting the needs of cloud users is an important goal in the cloud infrastructure. To solve such problems, an autonomous model with predictive capability is needed to do virtual machine consolidation at runtime effectively. In fact, using the feedback system of autonomous systems can make this process simpler and more optimized. The goal of this research is to propose a cloud resource management model that makes the virtual machine consolidation process autonomous, and by using a prediction method compromises between service level agreement violations and energy consumption reduction. In this research, an autonomous model is presented which detects overloaded servers in the analysis phase by a prediction algorithm. Also, at the planning phase, a multi heuristic algorithm based on learning automata is proposed to find proper servers for virtual machine placement. Cloudsim version 3.0.3 was used to evaluate the proposed model. The results show that the proposed model has reduced averagely the service level agreement violations, energy and migration counts by 67.08%, 11.61% and 70.64% respectively, compared to other methods. | ||
کلیدواژهها | ||
Autonomous؛ Cloud Environment؛ Virtual machine؛ Prediction؛ Learning automata؛ Service Level Agreement | ||
مراجع | ||
[1] S. Basu, G. Kannayaram, S. Ramasubbareddy, C. Venkatasubbaiah, Improved genetic algorithm for monitoring of virtual machines in cloud environment, in: Smart Intelligent Computing and Applications, Springer, 2019 319- 326.https://doi.org/10.1007/978-981-13-1927- 3_34 105 [2] D. Agarwal, S. Jain, Efficient optimal algorithm of task scheduling in cloud computing environment, arXiv preprint arXiv:1404.2076, (2014), [3] A. Ponraj, Optimistic virtual machine placement in cloud data centers using queuing approach, Future Generation Computer Systems, 93 (2019) 338- 344.https://doi.org/10.1016/j.future.2018.10.022 [4] S.B. Shaw, A.K. Singh, Use of proactive and reactive hotspot detection technique to reduce the number of virtual machine migration and energy consumption in cloud data center, Computers & Electrical Engineering, 47 (2015) 241-254, [5] M.C. Silva Filho, C.C. Monteiro, P.R. Inácio, M.M. Freire, Approaches for optimizing virtual machine placement and migration in cloud environments: A survey, Journal of Parallel and Distributed Computing, 111 (2018) 222- 250.https://doi.org/10.1016/j.jpdc.2017.08.010 [6] R.W. Ahmad, A. Gani, S.H.A. Hamid, M. Shiraz, A. Yousafzai, F. Xia, A survey on virtual machine migration and server consolidation frameworks for cloud data centers, Journal of network and computer applications, 52 (2015) 11-25, [7] Z. Li, An adaptive overload threshold selection process using Markov decision processes of virtual machine in cloud data center, Cluster Computing, 22 (2019) 3821- 3833.https://doi.org/10.1007/s10586-018-2408-4 [8] M. Masdari, S.S. Nabavi, V. Ahmadi, An overview of virtual machine placement schemes in cloud computing, Journal of Network and Computer Applications, 66 (2016) 106- 127.https://doi.org/10.1016/j.jnca.2016.01.011 [9] H.-P. Jiang, W.-M. Chen, Self-adaptive resource allocation for energy-aware virtual machine placement in dynamic computing cloud, Journal of Network and Computer Applications, 120 (2018) 119-129, [10] Z. Luo, Z. Qian, Burstiness-aware server consolidation via queuing theory approach in a computing cloud, 2013 IEEE 27th International Symposium on Parallel and Distributed Processing, (2013) 332-341, [11] W. Voorsluys, J. Broberg, S. Venugopal, R. Buyya, Cost of virtual machine live migration in clouds: A performance evaluation, IEEE International Conference on Cloud Computing, (2009) 254-265, [12] L. Hadded, F.B. Charrada, S. Tata, Optimization and approximate placement of autonomic resources for the management of service-based applications in the cloud, OTM Confederated International Conferences" On the Move to Meaningful Internet Systems", (2016) 175- 192.https://doi.org/10.1007/978-3-319-48472- 3_10 [13] P. Jamshidi, A. Ahmad, C. Pahl, Autonomic resource provisioning for cloud-based software, Proceedings of the 9th international symposium on software engineering for adaptive and selfmanaging systems, (2014) 95-104, [14] M. Mohamed, M. Amziani, D. Belaïd, S. Tata, T. Melliti, An autonomic approach to manage elasticity of business processes in the cloud, Future Generation Computer Systems, 50 (2015) 49-61, [15] M. Mohamed, D. Belaïd, S. Tata, Extending OCCI for autonomic management in the cloud, Journal of Systems and Software, 122 (2016) 416-429, [16] A. Beloglazov, R. Buyya, Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers, Concurrency and Computation: Practice and Experience, 24 (2012) 1397-1420. https://doi.org/10.1002/cpe.1867 [17] Z. Xiao, W. Song, Q. Chen, Dynamic resource allocation using virtual machines for cloud computing environment, IEEE transactions on parallel and distributed systems, 24 (2012) 1107- 1117, [18] P.A. Dinda, Design, implementation, and performance of an extensible toolkit for resource prediction in distributed systems, IEEE Transactions on Parallel and Distributed Systems, 17 (2006) 160- 173.https://doi.org/10.1109/TPDS.2006.24 [19] J. Liang, K. Nahrstedt, Y. Zhou, Adaptive multiresource prediction in distributed resource sharing environment, IEEE International Symposium on Cluster Computing and the Grid, 2004. CCGrid 2004., (2004) 293- 300.https://doi.org/10.1109/CCGrid.2004.13365 80 [20] E. Arianyan, H. Taheri, S. Sharifian, Novel heuristics for consolidation of virtual machines in cloud data centers using multi-criteria resource management solutions, The Journal of Supercomputing, 72 (2016) 688- 717.https://doi.org/10.1007/s11227-015-1603-9 [21] J. Subirats, J. Guitart, Assessing and forecasting energy efficiency on Cloud computing platforms, Future Generation Computer Systems, 45 (2015) 70- 94.https://doi.org/10.1016/j.future.2014.11.008 [22] M. Ghobaei‐Arani, A.A. Rahmanian, M. Shamsi, A. Rasouli‐Kenari, A learning‐based approach for virtual machine placement in cloud data centers, International Journal of Communication Systems, 31 (2018) e3537. https://doi.org/10.1002/dac.3537 [23] F. Alharbi, Y.-C. Tian, M. Tang, W.-Z. Zhang, C. Peng, M. Fei, An ant colony system for energy-efficient dynamic virtual machine placement in data centers, Expert Systems with Applications, 120 (2019) 228- 238.https://doi.org/10.1016/j.eswa.2018.11.029 [24] R. Shaw, E. Howley, E. Barrett, An energy efficient anti-correlated virtual machine placement algorithm using resource usage predictions, Simulation Modelling Practice and Theory, 93 (2019) 322- 342.https://doi.org/10.1016/j.simpat.2018.09.019 [25] F. Farahnakian, A. Ashraf, T. Pahikkala, P. Liljeberg, J. Plosila, I. Porres, H. Tenhunen, Using ant colony system to consolidate VMs for green cloud computing, IEEE Transactions on Services Computing, 8 (2014) 187- 198.https://doi.org/10.1109/TSC.2014.2382555 [26] H. Hallawi, J. Mehnen, H. He, Multi-Capacity Combinatorial Ordering GA in Application to Cloud resources allocation and efficient virtual machines consolidation, Future Generation Computer Systems, 69 (2017) 1- 10.https://doi.org/10.1016/j.future.2016.10.025 [27] M.H. Ferdaus, M. Murshed, R.N. Calheiros, R. Buyya, Virtual machine consolidation in cloud data centers using ACO metaheuristic, European conference on parallel processing, (2014) 306- 317.https://doi.org/10.1007/978-3-319-09873- 9_26 [28] F. Teng, L. Yu, T. Li, D. Deng, F. Magoulès, Energy efficiency of VM consolidation in IaaS clouds, The Journal of Supercomputing, 73 (2017) 782-809.https://doi.org/10.1007/s11227- 016-1797-5 [29] A. Beloglazov, J. Abawajy, R. Buyya, Energyaware resource allocation heuristics for efficient management of data centers for cloud computing, Future generation computer systems, 28 (2012) 755- 768.https://doi.org/10.1016/j.future.2011.04.017 [30] A. Horri, M.S. Mozafari, G. Dastghaibyfard, Novel resource allocation algorithms to performance and energy efficiency in cloud computing, The Journal of Supercomputing, 69 (2014) 1445- 1461.https://doi.org/10.1007/s11227-014-1224-8 [31] E. Arianyan, H. Taheri, S. Sharifian, Novel energy and SLA efficient resource management heuristics for consolidation of virtual machines in cloud data centers, Computers & Electrical Engineering, 47 (2015) 222- 240.https://doi.org/10.1016/j.compeleceng.2015. 05.006 [32] S. Singh, I. Chana, M. Singh, R. Buyya, SOCCER: self-optimization of energy-efficient cloud resources, Cluster Computing, 19 (2016) 1787-1800.https://doi.org/10.1007/s10586-016- 0623-4 [33] S. Singh, I. Chana, R. Buyya, STAR: SLA-aware autonomic management of cloud resources, IEEE Transactions on Cloud Computing,(2017).https://doi.org/10.1109/TCC.2017.264878 8 [34] S. Singh, I. Chana, EARTH: Energy-aware autonomic resource scheduling in cloud computing, Journal of Intelligent & Fuzzy Systems, 30 (2016) 1581-1600.10.3233/IFS- 151866 [35] S.S. Gill, I. Chana, M. Singh, R. Buyya, CHOPPER: an intelligent QoS-aware autonomic resource management approach for cloud computing, Cluster Computing, 21 (2018) 1203- 1241.https://doi.org/10.1007/s10586-017-1040-z [36] M. Ghobaei-Arani, S. Jabbehdari, M.A. Pourmina, An autonomic resource provisioning approach for service-based cloud applications: A hybrid approach, Future Generation Computer Systems, 78 (2018) 191- 210.https://doi.org/10.1016/j.future.2017.02.022 [37] E. Outin, J.-E. Dartois, O. Barais, J.-L. Pazat, Enhancing cloud energy models for optimizing datacenters efficiency, 2015 International Conference on Cloud and Autonomic Computing, (2015) 93- 100.https://doi.org/10.1109/ICCAC.2015.10 [38] M. Maurer, I. Breskovic, V.C. Emeakaroha, I. Brandic, Revealing the MAPE loop for the autonomic management of cloud infrastructures, 2011 IEEE symposium on computers and communications (ISCC), (2011) 147- 152.https://doi.org/10.1109/ISCC.2011.5984008 [39] J.O. Kephart, D.M. Chess, The vision of autonomic computing, Computer, 36 (2003) 41- 50.https://doi.org/10.1109/MC.2003.1160055 [40] B. Jacob, R. Lanyon-Hogg, D.K. Nadgir, A.F. Yassin, A practical guide to the IBM autonomic computing toolkit, IBM Redbooks, 4 (2004), [41] S. Younesszadeh, M.R. Meybodi, A link prediction method based on learning automata in social networks, Journal of Computer & Robotics, 11 (2018) 43-55, [42] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A. De Rose, R. Buyya, CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms, Software: Practice and experience, 41 (2011) 23-50. https://doi.org/10.1002/spe.995 [43] K. Park, V.S. Pai, CoMon: a mostly-scalable monitoring system for PlanetLab, ACM SIGOPS Operating Systems Review, 40 (2006) 65- 74.https://doi.org/10.1145/1113361.1113374 | ||
آمار تعداد مشاهده مقاله: 424 تعداد دریافت فایل اصل مقاله: 315 |