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Some results on disjointness preserving Fredholm
operators between certain Banach function
algebras

Lida Mousavi*! and Sedigheh Hosseini?

ABSTRACT. For two algebras A and B, a linear map T : A—B is disjointness
preserving if z -y = 0 implies Tz - Ty = 0 for all z,y € A and is said Fredholm
if dim(ker(T)) i.e. the nullity of T and codim(7T'(E)) i.e. the corank of T are fi-
nite. We develop some results of Fredholm linear disjointness preserving operators
from Cy(X) into Cy(Y) for locally compact Hausdorff spaces X and Yin [9], into
regular Banach function algebras. In particular, we consider weighted composi-
tion Fredholm operators as a typical example of disjointness preserving Fredholm
operators on certain regular Banach function algebras.

1. Introduction

Let A, B be two spaces of functions a map 7" : A — B is disjointness preserving
if f-g=0impliesTf-Tg =0 for all f,g € A. Weighted composition operators are
examples of linear disjointness preserving or separating operators between spaces
of functions. When X and Y are compact Hausdorff spaces, each linear separating
bijection operator T': C'(X)—C(Y) is a continuous weighted composition opera-
tor where C'(X) is the Banach algebra of all complex-valued functions on X with
supremum norm [7]. This result has been extended to Cy(X), the Banach algebra
of all continuous complex valued function on locally compact space X, which is
vanishing at infinity [8]. Linear operators T" : L,(u) — L,(p) with the property
that f-g = 0, a.e. implies Tf - Tg = 0, a.e. were considered by Banach in [5].
Disjointness preserving operators between two vector lattices is studied in [1, 4].
It was proved in [6] that when A, B are certain regular semisimple commutative
Banach algebras then every separating bijection is automatically continuous and its
inverse is separating and under extra conditions on B induced a homeomorphism
between the structure spaces of A and B. In their joint paper [9], J. Jeang and

2010 Mathematics Subject Classification. Primary: 46J10; Secondary: 47B30.
Key words and phrases. Disjointness preserving, Weighted composition, Fredholm

Corresponding author*.
32



DISJOINTNESS PRESERVING FREDHOLM OPERATORS 33

N.C. Wong considered Fredholm linear separating operators from Cy(X) into Cy(Y)
for locally compact Hausdorff spaces X and Y and showed that if there exists such
map, then X and Y are homeomorphic after removing finite subsets. A complete
description of the Fredholm disjointness preserving operators between ultrametric
spaces of (bounded and not necessarily bounded) continuous functions defined on
N-compact spaces given in [3].

In this paper, we give some results about disjointness preserving Fredholm oper-
ators between certain regular Banach function algebras and in the sequel we will deal
with properties of weighted composition Fredholm operators as a standard example
of all disjointness preserving Fredholm operators.

2. preliminaries

Let A be a commutative Banach algebra, the space of all multiplicative linear
functional on A which is called the structure space of A, i.e. o(A), is a locally
compact Hausdorff space with respect to Gelfand topology. For a € A, let a €
Co(c(A)) be its Gelfand transform of a such that a(p) = ¢(a), for all ¢ € o(A) .
In this case if the Gelfand transform a — a is injective then A is called semisimple.
A commutative Banach algebra A is said to be regular if for each closed subset E
of (A) and ¢ € o(A)\E there exists a € A, such that a(p) =1 and ¢ =0 on E.

Let X be a locally compact Hausdorff space, a subalgebra A of Cy(X) is called
Banach function algebra, if it is separating the points of X and for all z € X, there
exists f € A such that f(z) # 0. It is clear that every Banach function algebra
is commutative and semisimple and each commutative semisimple Banach algebra
is considered, as a Banach function algebra on its structure space o(A). When
(A,||-]|4) is a Banach function algebra on a locally compact Hausdorff space X,
then ||||co < ||*||4, where ||-||oo is supremum norm of Cy(X), also for each f € A and
z € X we use f(z) instead of f(z). A uniform algebra on X is a Banach function
algebra whose complete norm is the supremum norm on X. For each ideal I of A we
denote the hull set of I by ha(l) = {x € X : f(z) = 0,forallf € I}. The Jacobson
radical of a commutative Banach algebra A is defined by Rad(A) = (1 ¢, .4 ker ¢

Let X, be the one-point compactification of X,cly_(FE) and int(E) mean re-
spectively the closure and interior of subset E of X in X, coz(f) denote the cozero
set of f € Aie. theset {x € X : f(x) # 0}.

A Banach function algebra A on a locally compact Hausdorff space X is said
to satisfy Ditkin’s condition, if for each z € X, and f € A, with f(z) = 0 there
exists a sequence {f,} in A such that f, vanishing on a neighborhood of z and
[fuf = Fla—0.

Let E and F' be Banach vector spaces a linear map 7' : E—F' is said Fredholm
if dim(ker(7")) i.e. the nullity of 7" and codim(7T'(E)) i.e. the corank of T are finite.
We say that a bounded linear map T : F——F' is bounded bellow if there exists
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positive real number r such that ||Te|| > r||e||, for each e € E. It follows from the
open mapping theorem that 7" is a bounded bellow if and only if T is injective and
has closed range. Also each bounded linear map 7" with finite corank has a closed
range, see [2].

3. Fredholm operators between certain Banach function algebras

Suppose A and B be Banach function algebras on their structure spaces X and
Y respectively and T : A—B be a disjointness preserving operator. The evaluation
map 6, on B is defined by d,(g) = g(y) for each y € Y and Y} will stand for the set
of elements y € Y where ¢, o T" # 0. In this case, for each y € Y|, the support of
dy o T denoted by supp( d, o T) , is defined as the set of all x € X, the one point
compactification of X such that for each neighborhood U of z in X, there exists
an element g € B with coz(g) C U and §, 0T (g) # 0. Let y € Y then the set supp(
dy o T) is non empty. If, in addition, A is regular, then supp( d, o T') is a singleton
( see Lemma 1 of [6] ). In this case the support map h : Yo— X of T is defined as
h(y) =supp(d, o T'). In the sequel we shall use the following proposition concerning
disjointness preserving operators between regular Banach function algebras.

Proposition 3.1. Let A and B be reqular Banach function algebras with struc-
ture spaces X and Y, respectively, such that A satisfies the Ditkin’ s condition.
Let T : A—B be a disjointness preserving operator. There exist continuous maps
h:Yo—X (which is called the support map of T) and w : h™1(X) C Yy—C which
18 non-vanishing such that

(a) for each neighborhood U in X and f € A, fi,. = 0 implies that T fj,-1 ) =
0.

(b) h(coz(Tf)) C clx_(coz(f)) for all f € A.

(c) Let Y, be the set of all y € Yy, such that 6, 0T is continuous on (A, | - ||4)
and Yy be the complement of Y. in Yy, then h(Y.) C X.

(d) For each y € Y, the equality T f(y) = w(y)-f(h(y)), holds for each f € A if
and only if y € Y,.

(e) Y. is closed in h™'(X).

(f) h(Yy) is a subset of the limit points of X .

(9) The set h(Yy) Nint(K) is finite, for every compact subset K of X.

(h) If T is injective, then h(Yy) is a dense subset of Xo.

PROOF. See the proof of propositions 3,4 and 5 in [6].
]

Now we prove some results in the following two lemmas which will be used in
section 4.

Lemma 3.2. Let A and B be reqular Banach function algebras with structure
spaces X and Y, respectively, where A satisfies the Ditkin’s condition. Let T :
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A—B be a disjointness preserving operator with finite nullity m. Then X \clx_ (h(Yp))
consists of k isolated points, where k < m. Moreover, for each compact sub-
set K of X we have, int(K) Nclx_(h(Y.)) = int(K) Nclx_(h(Ys)), consequently
X\l (h(Ye)) = X\clx., (h(Y0)).

PROOF. Assume first that there exist distinct isolated points x1, xa, ..., Tpiqin
X\clx, (h(Yp)) and let Vi, Vs, ..., Vi,11 be disjoint open neighborhoods of elements
X1, T2y ey Ty 10 X\clx_ (h(Y))), respectively. For each i = 1,2,....m + 1 let U;
be an open neighborhood of x; such that clx_(U;) € V;. Then by the regularity
of A for each i = 1,...,m + 1 there exists an element f; € A, such that f;(z;) =1
and f; = 0 on X\U;. Let y € Y, UY,; = Y, be an arbitrary point. We can see
that h(y) € clx. (coz(f;)), which implies that y & coz(T'f;) according to Proposition
3.1(b), that is, T'f;(y) = 0. Since T'f; = 0 on Y'\Yp, we conclude that T'f; = 0, i.e.
fi € ker(T'). This implies that dim ker(7") > m + 1, since f;’s are linearly indepen-
dent. This contradiction shows that the open subset X\clx_ (h(Yp)) of X consists
of at most m isolated points. Now suppose that K is a compact subset of X. Then
int(K)\clx,, (h(Y.)) C (int(K)\clx, (h(Y))) U (int(K) N h(Yy)), which implies that
int(K)\clx_ (h(Y.)) is a finite open subset of X, since both int(K)\clx_ (h(Yp))
and int(K) N h(Yy) are finite by the above argument and by Proposition 3.1(g).
Therefore, int(K)\clx, (h(Y.)) consists of isolated points. Using this fact that
h(Yy) is a subset of the limit points of X, (see Proposition 3.1(f)), we conclude
that (int(K)\clx_(h(Y2))) N A(Yy) = 0 and consequently int(K)\cly (h(Y.)) C
int(K)\clx_ (h(Yy)). Therefore, int(K)Neclx (A(Y:)) = int(K)Nelx, ((Yp)), which
implies that XNclx_ (h(Y.)) = XNclx, (h(Yy)) and hence the final result follows. [

In the following definition we assume that A and B be regular Banach function
algebras with structure spaces X and Y, respectively, where A satisfies the Ditkin’s
condition and T": A—B be a disjointness preserving operator.

Definition 3.1. We define an equivalence relation ~ on Y, such that y ~ 3/ if
and only if h(y) = h(y'). For y € Y. let [y] be the equivalence class of y. We define
M = {y €Y. : card([y]) > 1} and m(T) = card(U([y]\{y})) = Sfcard(y)) — 1 :
[y] € Y./.}, where the union is taken over all distinct elements [y] € Y./. with
ye M.

Remark 3.3. For each f € A, Proposition 3.1(d) shows that if T f(y) =0, for
some y € Y. then Tf(y") =0 for all y' € [y|.

Lemma 3.4. Let A and B be reqular Banach function algebras with structure
spaces X and Y, respectively, where A satisfies the Ditkin’s condition. Let T :
A—B be a disjointness preserving Fredholm operator with finite nullity m and
corank n, then m(T) + card(Y'\Yy) < n.
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PROOF. Suppose that the inequality m(7") +card(Y'\Yy) < n does not hold, i.e.,
there exist ya,0), Y@2,0) - Yo, € Y\Yo and xq,..., 2, € h(Y;) with corresponding
points Y. j), Y.y - Yy € b (x;) NYe for j = 1,2,....k such that Z§:1(tj —
1)+t >n+1. Forj=0,1,2,..,k,let g;; € B such that g;;(yu;) = 1 and
96,5 (W ) = 0, whenever ¢ # ' or j # j/, for 1 < i < t; —1 and for j = 0,
1 < < tg. We can assume that g ;’s have disjoint supports. Now consider the
fOHOWing subset, of B, G = {9(1,0)7 <3 9(t0,0), 9(1,1)5 -++3 J(t1—-1,1)5 =++» G(1,k) 5 g(tk—l,k’)}'
Using Remark 3.3 we show that G has no intersection with 7'(A). Indeed, for
1 < i <ty if guo = Tf, for some f € A, then g40)(yu0) = Tf(Yu0) = 0,
which is a contradiction. Now if there exists f € A such that g; ;) = T'f, for some
Jj=12,..,kand 1 <7 <t; —1, then since for each ¢ # i, 1 <7 < t; — 1, yu,
and y( ;) are in the same equivalence class and moreover, g ) (yu.;)) = 0, it follows
that g4 j)(yi,;)) = 0, which is again a contradiction. We now show that the elements
of G are linearly independent functions in B modulo the range of 7. In fact, if
9= Mi.)9G, € T(A), where the sum is taken over all (4, j) with g, j) € G, and
A@i,j) are complex numbers, then since y;0) € Y'\Yp for 1 < i < tp, it follows that
9(Y@,0)) = 0, which implies easily that A;g) = 0 for all 1 <4 < #,. On the other
hand, since for each j = 1,2,.... k, g(y(,.5)) = 0, and y, ;) is in the same equivalence
class of y; ;) for all 1 <7 <t; — 1 it follows that \; ;) = g(ya,j)) = 0. Therefore,
dim (B/r(4)) > n+ 1, which is a contradiction. Hence m(T) + card(Y'\Yy) < n as
desired. ([l

4. Weighted composition Fredholm operators

In this section we give some results on weighted composition fredholm operator
T : A—B, as an example of disjointness preserving fredholm linear maps, defined
between certain regular Banach function algebras A and B by T'f(y) = w(y) f(h(y)),
for f € A and an appropriate function h : Y — X and for a non-vanishing function
w:Y— C. In the sequel A, B are regular Banach function algebras with structure
spaces X and Y, respectively, where A satisfies the Ditkin’s condition and B is a
uniform algebra.

Lemma 4.1. Let T : A—B be a weighted composition operator of the form
Tfly) =wy)f(h(y), y €Y and f € A, where h : Y—X and w : Y—C are
continuous functions and w 1s non-vanishing. If T has a closed range, then there
exists a positive constant r such that for each x € h(Y')

0<r< sup |w(y)l|
yeh~'({z})

ProOF. We note that, using the closed graph theorem, T is continuous. First
consider the case that T' is injective. Then since T has a closed range it follows
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easily that 7" is bounded bellow. So there exists a positive real number r such that
rl|flla < | Tfl|ly for all f € A. Let 2 € h(Y) and U,V be open neighborhoods of
z in X such that clx(U) is compact and clx(U) C V. By the regularity of A there
exists a function fyy € A such that fyy =1 on U and fyy = 0 on X\V.Therefore

rllfovlla < T fovlly = sup W) fov(h(y))] = sup |w)llfov(h(y))]

h(y)eV

< sup |w()|[fovlx < sup [w@)llfov]a.
h(y)eV h(y)eV

Therefore, 7 < sup,cp-1(y)|w(y)|. The above argument shows that we can choose
a net {y,} in Y and take ¢ > 0 small enough, such that h(y,)—z and |w(y,)| >
r — €. Passing through a subnet we can assume that y,—y for some yy € Y.
Hence for all U and V' as above we have |T fyy(yy)| = |w(yx)| > r—¢e > 0, for
sufficiently large A, thus yo # oo and hence yy € Y. Therefore h(yy) = = and
r—e < |w(yo)| < supyep-1(gey [w(y)]- Since € can be arbitrary small, this implies
the desired inequality. Now assume that 7" is not injective. Hence in this case h(Y")
cannot be dense in X. Set I = ker(T), then clearly I is a closed ideal in A and
so A/I is a Banach algebra with structure space o(A/I) = ha(I). We first show
that ha(I) = clx(h(Y)). Obviously clx(h(Y)) C ha(I). Conversely, let zq € ha(l)
and assume on the contrary that zo ¢ clx(h(Y)). Then by the regularity of A,
there exists a function f € A such that f(zy) =1 and f = 0 on h(Y). Therefore,
Tf(y) = w(y) - f(h(y)) = 0 for all y € Y which implies f € I. On the other
hand we have f(zg) # 0 which is a contradiction. Thus hy(I) = clx(h(Y)). We
now show that A/ is semisimple. for each y € Y let ¢ : A/I—C be defined
by one) (f +1) = f(h(y)). Clearly ¢y is well-defined and is a non-zero complex
homomorphism on A/I. Henceif f € Aand f+1 € Rad(A/I), then, f(h(y)) = 0 for
each y € Y, which implies that T f = 0, that is f € I. Therefore A/I is semisimple
and we can consider A/I as a Banach function algebra on its maximal ideal space.
Through this identification ¢y, is, indeed, the same evaluation homomorphism
On(y)- Now let T : A/I—B be defined with T(f + I) = T'f then T is injective and
is a weighted composition operator of the form T(f + I)(y) = w(y) - dne (f + I).
Clearly T has a closed range as well. Therefore the conclusion follows from the first
part of proof. O

Corollary 4.2. Under the hypotheses of the above lemma, h(Y') is a closed subset
of X.

PROOF. Let 2 € clx(h(Y)) and z¢g & h(Y'). Then there exists a net {y,} in YV
such that h(yy) # x¢ and h(yy)—>xo. Using the above lemma for each h(y,) instead
of z and replacing each y, by an appropriate point in Y we can assume that {w(y,)}
is away from zero. By passing through a subnet, if necessary , we can also assume
that yy—1o for some yg € Y. If yo € Y, then h(yy) = x¢ which is impossible, thus
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yo = 00. Therefore, 0 = limy T'f(yx) = limyw(yyr) f(h(yy)), for each f € A, which
implies that f(xo) = limy f(h(yx)) = 0, for each f € A, which is impossible. Thus
h(Y) is closed in X. O

Before stating the next theorem we note that for each isolated point x € X, the
regularity of A shows that the characteristic function xy,} is an element of A.

Theorem 4.3. Under the hypothesis of the above lemma if T is Fredholm with
nullity m and corank n, then

(a) X\h(Y) =A{z1,...,xm}, where x1, ..., x,, are isolated points of X. Moreover,
ker(T") = span{X{z}, ---» X{wm} }-

(b) w is away from zero, i.e. there exists a positive real number r such that for
eachy €Y, 0<r < |w(y)|

(¢) h: Y\M—h(Y\h(M) and h : Y/.—h(Y), [y] = h(y) are homeomor-
phism.

PROOF. (a) We first note that since h and w are continuous and T'f(y) =
w(y)f(h(y)) for all y € Y it follows easily that Y = Y, = Yy where Y, and Yj are
the subsets associated to the separating map 7' in Proposition 3.1. Using Lemma
3.2 we have X\h(Y) = {z1,...,x} where k < m and x, ...,z are isolated points
of X. So it suffices to show that & = m and {X{z,},--s X{zn}} generates ker(T). It
is clear that for a function f € A, f € ker(7), if and only if f = 0 on A(Y), if
and only if there exist \q,..., \; such that f = Zle AiXz;- Hence ker(T) = span
{Xqa1ys oo Xqaar ;- Since {X{z3 15, is linearly independent and dim ker(T) = m, we
conclude that k = m, as desired.

(b) Using the same argument as in Lemma 3.4 we obtain m(7T) < oo, which
implies, in particular, that M is a finite subset of Y. By Lemma 4.1, there exists
r1 > 0, such that 0 < ri < sup,ep—1(q,) [w(y)] for all z € A(Y). Then it is easy to
see that for r = min{ry, |w(y)| : y € M}, the inequality 0 < r < |w(y)| holds for all
yevy.

(c) Obviously the restriction map h : Y\M—h(Y)\h(M) is a bijective con-
tinuous map. We shall prove that the inverse map A : h(Y)\h(M)—Y\M is
continuous as well. Let {h(yx)}x be a net in A(Y)\h(M), such that h(yy)—h(y)
for some y € Y\ M and assume on the contrary that {y,} does not converge to y.
Passing through a subnet, we may assume that yy—yo for some y, € Y, with
Yo # y. If yo = oo then 0 = T'f(yo) = limy T f(yr) = limyw(yr)f(h(yx)). Using
part (b) we conclude that limy(h(yy)) = 0, i.e. f(h(y)) = 0 for each f € A, hence
h(y) = oo, which is a contradiction. Thus yg # oo, i.e. yo € YV and consequently
h(yx)—h(yo). Therefore, h(y) = h(yo), which concludes that y = yo a contradic-
tion. To prove that  : Y/.—h(Y) is a homeomorphism, We first note that h is a
continuous bijection. Hence it suffices to show that h is an open map. For, suppose
that U is an open subset of Y/, and let U = {y € Y : [y] € U}. Then U is an open
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subset of Y and since h : Y\M—h(Y)\h(M) is a homeomorphism, so it suffices
to show that each point z € A(U) N k(M) is an interior point of A(U). Suppose on
the contrary that there exists = € h(U) N h(M) and {z\}, in h(Y)\A(U) such that
for each \, zy ¢ h(M) and xy—x. Let yy = h~!(z)). As the equivalence classes
[ya] € U imply yx & U then there exists a subnet {y.} of {yx} and yo € Yo \U such
that yy, —yo. Let yo € Y then from this fact that yo & U we imply [yo] & U, on the
other hand h([yo]) = h(yo) = lima h(yy,) = lim 25, = 2 € h(U) which is a contra-
diction. Thus yo = oo and consequently 0 = lim, 7'f(y,,) = lim, w(y», ) f(R(yx,))-
Now by part (b) we conclude that lim,, f(h(yy,)) = 0. Hence f(z) =0 forall f € A
which is impossible. Therefore, x is an interior point of 7L((7 ) and this completes the
proof. O
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