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Introduction

Increases in animal production directly result in the gen-
eration of large amounts of slowly degradable wastes in 
some cases, and in others, by-products that can be tox-
ic and cumulative in the environment (Schneider et al. 
2012). In poultry and horse farming, one of the gener-
ated wastes is the floor covering where the animals re-

main. This material, known as poultry or horse bedding, 
is used to avoid direct contact between the animal and 
the floor as a substrate for water absorption and the in-
corporation of feces, urine, and the remains of leftover 
or deteriorated food (Virtuoso et al. 2015). 

Such residues have the potential to be used in ag-
ricultural production as fertilizer or soil condition-
ers since they promote beneficial effects on the soil 
and plants (Komar et al. 2012; Souza and Rodrigues 
2017). However, animal manure, such as poultry litter, 
a mixture of organic materials including feces, feed, 
and bedding, is a valuable nutrient-rich soil fertilizer 
that has also been considered an important source of 
pathogenic microorganisms. When handled improperly, 
this material can contaminate the soil and plants used 
for human consumption, resulting in the worsening of 
global threats, such as antimicrobial resistance, and 
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represent a risk according to the One Health initiative 
(Haapapuro et al. 1997; Kyakuwaire et al. 2019; Souza 
et al. 2020). The term One Health refers to the idea that 
human and animal health are interdependent and bound 
to the health of the ecosystems in which they exist (OIE 
2020). This concept was implemented by the World Or-
ganization for Animal Health, as well as multiple oth-
er organizations, as a collaborative global approach to 
understand the risks for human and animal health, and 
ecosystem health as a whole (OIE 2020).

Consequently, animal waste management technolo-
gies have emerged, intending to mitigate environmental 
risks through the previous stabilization of these resi-
dues for later use as manure in the soil (Valente et al. 
2016). Some biological processes can stabilize animal 
production wastes, such as composting and anaerobic 
digestion, which use aerobic and anaerobic microor-
ganisms, respectively (Hadin et al. 2016).

Composting is defined as the biological decom-
position of organic materials, i.e., animal manure and 
plant matter, provided by the action of aerobic micro-
organisms (Sampaio et al. 2019). In addition to being 
an environmentally friendly procedure of low imple-
mentation and maintenance cost, this process stands out 
since it results in more stabilized organic matter, and is 
efficient in terms of toxic substance degradation, waste 
volume and matter reduction, nutrient concentration, 
and organic residue recovery (Costa et al. 2009; Larney 
et al. 2006; Larney et al. 2008). Moreover, composting 
is one of the best alternatives to reduce the population 
of potentially pathogenic microorganisms in wastes, 
minimizing the risk of environmental contamination 
and ensuring the sanitation of the final product (Sá et 
al. 2014). It is noteworthy that composting is a pro-
cess that generates and emits gases, some of which are 
greenhouse gases (GHG), which favor global warming 
(Sánchez et al. 2015). Nevertheless, this method is also 
considered a mitigating technology because it reduces 
the emission of these gases per ton of treated waste. 
Solid wastes are an important source of GHG, and their 
treatment and/or final disposal is decisive in the amount 
of gas emitted (Inacio et al. 2010).

According to Pereira et al. (2013), animal manure 
can be used in agricultural areas without prior treatment 
in conventional farming. However, when this residue is 
obtained from non-organic production systems, it can 
only be utilized in organic farming after undergoing 
proper composting and biostabilization (Brasil 2014). 
Normative Instruction 46, of October 6, 2011, devised 

by the Ministry of Agricultural Defense, establishes in 
Annex VI the maximum limits of contaminants admit-
ted in organic composts, which are: 1.000 most prob-
able number (MPN) of thermotolerant coliforms per 
gram (g) of dry matter; one viable helminth egg per 4 
g of total solids, and absence of Salmonella sp. in 10 g 
of dry matter (Brasil 2011). Based on these parameters, 
it is possible to determine a manure’s suitability for ag-
ricultural use in Brazil (Duarte and Pasqualine 2017).

In Europe, animal wastes are required to come from 
a technical, biogas, or composting plant to be used as a 
fertilizer in agriculture. They must be free of Salmonel-

la (no Salmonella in 25 g of treated product) and En-
terobacteriaceae (based on the aerobic bacterial count: 
1,000 CFU per gram of treated product) (European Par-
liament and Council 2002). In the USA, the recommen-
dations are 0.3 MPN per gram or milliliter of analytical 
portion for E. coli O157:H7, less than 3 MPN per 4 g or 
mL of total solids for Salmonella spp., and less than 1 
colony-forming unit (CFU) per 5 g or mL of analytical 
portion for L. monocytogenes (FDA 2018).

Considering that the composting of residues from 
animal production is a recommended technique to guar-
antee the sanitation and agronomic viability of organic 
composts, the present study aimed to evaluate the mi-
crobiological and parasitic load during the composting 
of residues from conventional and organic animal pro-
ductions.

Materials and methods

Origins of the animal production wastes 

The horse and poultry beddings from conventional and 
organic production systems were acquired in Septem-
ber 2019. The horse bedding came from a farm in Nova 
Friburgo (22º17’S, 42º32’W), located in the mountain-
ous region of the state of Rio de Janeiro, Brazil. Mean-
while, the poultry litter came from two farms: one in 
São José do Vale do Rio Preto (22º09’S, 42º55’W) that 
adopts the organic production system and the other in 
Nova Friburgo (22º17’S and 42º32’W) that adopts the 
conventional production system; both also located in 
the mountainous region of Rio de Janeiro, Brazil. The 
samples were packed in plastic bags and transported 
to the Integrated System of Agroecological Production 
(SIPA), known as Fazendinha Agroecológica Km 47, 
a partnership of the Federal Rural University of Rio de 
Janeiro (UFRRJ), the State Agricultural Research Cor-
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poration of Rio de Janeiro (Pesagro), and the Brazil-
ian Agricultural Research Corporation (EMBRAPA), 
where the composting trials were carried out.

Assembly, composting, and sample collection

The composting experiment was conducted from Octo-
ber 2019 to March 2020 at the Fazendinha Agroecológi-
ca Km 47, in Seropédica, located in the metropolitan 
region of Rio de Janeiro, at the coordinates 22º46’S 
and 43º41’W (Dias 2007). The climate in the area is 
hot and humid and is classified as Aw according to the 
Köppen climate classification, with high temperatures 
in the summer and mild temperatures in the winter. The 
average annual temperature in the area is 24.5°C, with 
a rainy period from November to March and average 
yearly precipitation of 1,213 mm (EMBRAPA 1999). 

In a covered shed, three piles were made for each 
type of waste, namely, horse bedding (HB), convention-
al poultry litter (CPL), and organic poultry litter (OPL). 
With the aid of a wire mesh, cylindrical shapes measuring 
1 m (height) x 1.20 m (diameter) were assembled, after 
which the beddings were immediately added. The mate-
rial was stored in the wire mesh for better optimization of 
space and maintenance throughout the experiment.

The composting process was carried out for 125 
days. Temperature evaluations were performed daily 
during the first two weeks using a culinary digital ther-
mometer inserted at 20 cm of depth in three points in 
each pile, and then on alternate days until the material 
stabilized. The piles were irrigated to maintain humid-
ity close to 55%, 45%, and 45% for the horse bedding 
and the organic and conventional poultry litter, respec-
tively. These humidity values were stipulated based on 
the ease of handling and composition.

Samples were collected at 0, 14, 32, 60, 90, and 125 
days and were obtained in three simple samplings con-
ducted at the time of pile turning and at equidistant posi-
tions from the other samples. The samples were mixed, 
forming composite samples, then packed in plastic bags 
and transported to the Microbial Diversity Laboratory 
of the UFRRJ Veterinary Institute. Upon arrival, the 
samples were stored at -20ºC for further analyses.

Microbiological analysis

Microbiological analysis was performed to quantify 
the thermotolerant coliforms, Salmonella, and helminth 
eggs. Initially, in order to investigate the material for 

Salmonella and quantify the thermotolerant coliforms, 
approximately 10 g of each sample was added to 90 mL 
of 0.1% peptone water.

Determination of thermotolerant coliforms

The Most Probable Number (MPN) technique was used 
to quantify the thermotolerant coliforms (Rice et al. 
2017). After homogenization of the first dilution, seri-
al dilutions were prepared in tubes containing 9 mL of 
0.1% peptone water. For the presumptive test of total 
coliforms, 1 mL of the respective dilutions were trans-
ferred to five tubes containing 9 mL of Lauryl Sulfate 
Tryptose (LST) broth and an inverted Durham tube, 
and incubated in an oven at 35°C for 48 h. Aliquots 
of positive samples (turbidity with or without gas in 
the Durham tube) were transferred to tubes contain-
ing Escherichia coli (EC) broth and were incubated in 
a water bath at 45ºC for 24 h. The presence of turbidity 
or contained gas inside the Durham tube was indicative 
of positivity.

Three series of five tubes were inoculated with three 
different serial dilutions, and the number of positive 
tubes from the three dilutions was compared with the 
MPN table. The most likely number for each sample 
was calculated according to the following formula:

Where:
V = largest inoculated volume.
The results were expressed in MPN/g. 
 
Presence/absence test for salmonella

The Salmonella assay was carried out according to the 
methodology proposed by the International Organiza-
tion for Standardization (ISO 2010). After diluting the 
sample in peptone water, the material was homoge-
nized and incubated at 35ºC for 24 h. Next, 1 mL was 
transferred to tubes containing 9 mL of tetrathionate 
broth, which were incubated at 35ºC for 24 h. Follow-
ing incubation, an aliquot of the tetrathionate broth 
was inoculated on Salmonella-Shigella Agar medium 
and incubated at 35ºC for 24 h. After this period, the 
plates were analyzed for colonies typical of Salmo-

nella (colonies with a black center). These colonies 
were stored and identified using the Matrix-Assisted 
Laser Ionization/Desorption Time-of-Flight technique 
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(MALDI-TOF) at the Integrated Microbiology Lab-
oratory (LIM) of the Paulo Góes Institute of Micro-
biology at the Federal University of Rio de Janeiro 
(UFRJ).

Helminth egg quantification

The quantification of helminth eggs was performed at 
the Experimental Chemotherapy Laboratory in Veteri-
nary Parasitology at the Veterinary Institute of the Fed-
eral Rural University of Rio de Janeiro (UFRRJ). For 
soft helminth eggs, the simple centrifuge-flotation tech-
nique was used (Figueiredo et al. 1984). The sample 
was initially diluted in the proportion of 2 g of sample 
per 10 mL of filtered water. The solution was then ho-
mogenized and filtered through a sieve and gauze and 
was transferred into a Falcon tube to be centrifuged at 
2,500 rpm for 10 min. Soon after centrifugation, su-
pernatant dissociation was verified, and the precipitate 
was resuspended in sucrose solution. Subsequently, 
this solution was subjected to a second centrifugation 
at 2,500 rpm for 10 min, after which the Falcon tube 
volume was completed with saturated sugar solution, 
forming a convex halo meniscus, where a microscopic 
slide was deposited. After 10 min, the slide was quickly 
removed, and a coverslip for microscopic viewing was 
placed on top of it.

Spontaneous sedimentation was conducted for 
dense helminth eggs (Hoffman et al. 1934). Initial-
ly, 2 g of the collected material was homogenized in 
water using a glass rod and filtered through gauze 
into a conical-bottom cup. Next, the cup was filled 
with water and kept at rest for two hours, favor-
ing the residues’ precipitation. Soon after, the su-
pernatant was replaced with clean water, promot-
ing resuspension of the precipitate. This operation 
was repeated twice until the supernatant became 
light-colored. An aliquot of the precipitate was then 
pipetted and deposited on the surface of a micro-
scopic slide for visualization.

The helminth eggs were visualized by 100x and 
200x power optical microscopy magnification. The 
identification and counting of the helminth eggs were 
based on the size and specific morphological charac-
teristics of the eggs, such as shape, egg content, and 
thickness of the outer membrane (shell), in addition to 
modifications such as protuberances, spikes, polar stop-
pers, and operculum (Soulsby 1987; Zajac and Conboy 
2012).

Results and discussion

During the composting process, the horse bedding and 
conventional and organic poultry litter showed very 
similar behavior (Fig. 1). The maximum temperature 
points were observed at 3, 15, 33, and 61 days after 
the start of the experiment. We believe this fact is relat-
ed to the humidification and turnover of the windrows 
on the previous days (0, 14, 32, and 60 days), which 
provided aeration and, consequently, the maintenance 
of microbial activity and greater heat release. The low 
temperature after these peaks probably occurred due to 
the decrease in oxygen due to the piles’ natural com-
paction and reduced water availability, which causes 
a reduction in microbial activity and, as a result, low-
er temperatures. Several thermophilic and mesophilic 
phases were observed during composting. Similar be-
havior was observed by Oviedo-Ocaña et al. (2015). 
Our results corroborate those reported by Pampuro et 
al. (2016) when evaluating two composting strategies 
(with and without turning). Note that, in general, the 
temperature profiles were quite similar. However, the 
windrows that were turned over underwent increases in 
average temperature after the turns. The authors stated 
that this is due to the rise in oxygen levels, which stim-
ulates microbial activity.

The thermophilic phase is essential for reducing 
microbiological contamination, thus eliminating bac-
terial populations from the organic waste (Heck et al. 
2013; Matos 2014). According to CONAMA resolution 
481/2017, the period and temperature required for san-
itizing organic solid wastes during composting in open 
systems is 55°C for 14 days or 65°C for three days 
(Brasil 2017). 

The organic poultry litter exhibited temperatures 
above 65ºC at 33 days of composting during four con-
secutive days. Meanwhile, the conventional poultry 
litter displayed a similar temperature at 15 days of com-
posting, which lasted three consecutive days. The horse 
bedding, in turn, presented a maximum temperature of 
63ºC only once (16th day). Therefore, both types of 
poultry litter could be considered sanitized according 
to the temperature established in the legislation, while 
the horse bedding displayed similar behavior to what 
is deemed ideal. Compared to the horse bedding, the 
higher temperatures achieved in the poultry litter were 
probably related to the material’s higher nitrogen con-
tent, favoring an increase in biological activity, and its 
fine granulometry, forming piles with better tempera-
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Fig. 1 Temperature profile during the composting process
HB = horse bedding; CPL = conventional poultry litter; OPL = organic poultry litter. Arrows indicate collection points

ture distribution and less heat loss. In contrast, being a 
coarser material, the horse bedding provides proper aer-
ation and reaches high temperatures but is more prone 
to heat loss (Nascimento 2010).

After 68 days, all the materials registered average 
temperatures below 45ºC, remaining until the end of 
the composting process in the mesophilic phase. At 
125 days, temperatures between 29ºC and 34ºC were 
recorded, close to room temperature, indicating the cur-
ing or maturation period. According to Kiehl (2004), 
the maturation phase indicates that the compost pres-
ents ideal physical, chemical, and biological charac-
teristics for use as an organic fertilizer. Meanwhile, 
according to Bernal et al. (2009), in addition to tem-
perature, decreases in water-soluble organic-C, NH4-N, 
phytotoxic effects, and microbial activity and increases 
in the humidification of the organic materials are indi-
cators of progressive stabilization of the compost con-
tent, leading to an acceptable degree of maturity based 
on the established indices in the literature for composts 
of different origin.

Regarding the microbiological quality of the mate-
rial, the fresh residues showed high microbial contami-
nation (more than 1017 MPN g-1) (Table 1). Considering 
that these residues contain animal waste in their com-
position and that animals have significant intestinal mi-
crobial diversity, such behavior was already expected 
and reinforces the risk of using fresh materials from 
animal production in agriculture, since these microor-
ganisms can contaminate plants which, in turn, when 
ingested, contaminate humans and animals, rendering 

this practice a public health issue. This problem was 
reinforced by Kyakuwaire et al. (2019), who stated that 
the direct application of poultry litter on agricultural 
soil could cause damage to animal, human, and envi-
ronmental health.

Composting has become an alternative to mitigate 
environmental risks through the previous stabilization 
of residues for later use in the soil as fertilizer (Valente 
et al. 2016). In organic farming, animal residues need 
to be biostabilized through composting for use (Brasil 
2014). Also, according to Brazilian legislation, organic 
compounds are required to obey the maximum limits of 
microbiological contaminants in order to be used in or-
ganic agriculture: 1,000 most probable number (MPN) 
of thermotolerant coliforms per gram of dry matter; one 
viable helminth egg per 4 g of total solids, and absence 
of Salmonella sp. in 10 g of dry matter (Brasil 2011).
In the present study, during the composting process, a 
reduction in thermotolerant coliforms was observed in 
all treatments. The horse bedding was the only material 
that showed a decrease in these microorganisms at 60 
days (2.6 x 1011 MPN g-1). However, at 90 days, this 
load showed a particular increase, reaching 2.7 x 1013 
MPN g-1, remaining so until the end of the experiment. 
Meanwhile, the levels in the poultry litter decreased 
only after 90 days.

All materials underwent a significant reduction in 
thermotolerant coliforms at the end of the composting 
process, reaching 99.98%, 100%, and 99.80% for the 
horse bedding, organic poultry litter, and conventional 
poultry litter, respectively. Nonetheless, despite such 
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HB = horse bedding; CPL = conventional poultry litter; OPL = organic poultry litter.

0 14 32 60 90 125 MAPA
Thermotolerant coliforms (MPN g-1)

HB > 1.6 x 1017 > 1.6 x 1017 1.6 x 1017 2.6 x 1011 2.8 x 1013 2.7 x 1013

≤1000CPL > 1.6 x 1017 > 1.6 x 1017 1.6 x 1017 1.1 x 1017 1.1 x 1015 3.2 x 1014

OPL > 1.6 x 1017 > 1.6 x 1017 1.6 x 1017 1.6 x 1017 4.3 x 107 1.4 x 107

Salmonella/10g
HB Absent Absent Absent Absent Absent Absent

AbsentCPL Absent Absent Absent Absent Absent Absent
OPL Absent Absent Absent Absent Absent Absent

Viable helminth eggs/4g type Strongyloidea
HB 3 1 0 0 0 0

1CPL 1 1 0 0 0 0
OPL 1 1 0 1 0 0

Table 1 Most probable number per gram (MPN g-1) of thermotolerant coliforms, Salmonella sp. assay, and quan-
tification of viable helminth eggs in animal production wastes during the composting process (0, 15, 30, 60, 90, 
and 120 days) 

reduction, the values remained above the levels accept-
ed by Brazilian legislation for use in organic agricul-
ture (Brasil 2011), indicating that the composts offer a 
risk of transmitting pathogens to humans and cannot be 
used safely. It is worth mentioning that the poultry lit-
ter presented a temperature above 65ºC for three days, 
as recommended in the legislation for sanitizing this 
material (Brasil 2017). However, it was not enough to 
reduce the thermotolerant coliform levels to acceptable 
organic agriculture values, probably due to the high co-
liform load present in the raw material.

Vasconcelos (2019) considers that the high levels 
of thermotolerant coliforms in raw materials (on aver-
age 7.1 x 104 MPN g-1) is the probable origin of this 
contamination at the end of the composting process 
of urban waste without shading screen protection (1.5 
x 103 MPN g-1) and periodic turning (1.0 x 104 MPN 
g-1). Additional treatments must be performed to reduce 
contamination and enable the use of this material for 
agricultural purposes. Sá et al. (2014) reported that, 
although there was a significant reduction (99.9%) in 
the coliform population during the automated compost-
ing of swine liquid waste, the final result was greater 
than the limit established by the Ministry of Agricul-
ture, Livestock and Food Supply (MAPA) for class A 
composts. In contrast, Souza et al. (2019) stated that 
composting was efficient in eliminating thermotolerant 
coliforms in goat and sheep waste.

Salmonella has been found in the intestinal tract of 
a wide array of domestic animals, namely birds (Hugas 

and Beloeil 2014). In poultry litter, Salmonella, E. 

coli, and coliforms are the most prevalent bacterial 
contaminants (Kyakuwaire et al. 2019). According to 
Brasil (2011), a large amount of Salmonella sp. is elim-
inated in the feces. Nonetheless, this microorganism 
was absent in the present study, since the collection of 
the fresh residues until the final compost of the different 
materials. According to Lopes et al. (2014), the possi-
bility of intermittent excretion of this microorganism 
by birds under specific conditions may justify the low 
frequency of identification of Salmonella sp. in fecal 
samples. Moreover, the detection of low levels of this 
pathogen can be related to competition with other or-
ganisms in beddings (Barbour et al. 1999). Souza et al. 
(2019) analyzed the microbiological characteristics of 
goat and sheep waste composting and also observed an 
absence of Salmonella throughout the process which is 
according to the current Brazilian legislation.

Significant variability was observed regarding the 
presence and quantity of helminth eggs throughout the 
composting process. Considering the raw wastes, the 
horse bedding exhibited a larger number of helminth 
eggs (3 viable eggs g-1 type Strongyloidea) than the 
poultry litter (1 viable egg g-1 type Strongyloidea). 
Horses are parasitized by more than 90 species of hel-
minths, and the eggs of these parasites are excreted in 
the feces (Roberts and Janovy Junior 2009). When veri-
fying the prevalence of parasites in horses, Godéski and 
Pedrassani (2018) found that all the studied animals 
presented helminth eggs in their parasitological stool 
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exams. However, the parasitic load was considered 
low (102 ± 228 eggs g-1 of feces). Salas-Romero et al. 
(2017) observed an elevated parasitic load when evalu-
ating the excretion of helminth eggs in horses, with an 
average of 1,436 eggs g-1 of feces. Melo et al. (2019) 
stated that helminths are commonly reported in gastro-
intestinal tract infections in wild birds, releasing eggs 
next to the hosts’ feces (Bowman 2014).

Helminth eggs were not detected in the samples 
on the 32nd day in any of the beddings. In the organic 
poultry litter, one viable egg g-1 type Strongyloidea was 
detected at 60 days, with effective helminth egg elim-
ination only at 90 days. Likewise, the final composts 
showed no contamination by helminth eggs, possibly 
due to their lower amount in the fresh residue and the 
temperature above 60°C during composting. Tempera-
tures above 55ºC for three days are adequate for elim-
inating helminth eggs (Wichuk and Mccartney 2007).

Thus, in the present study, the composting process 
was effective in eliminating helminth eggs. Similarly, 
Heck et al. (2013) described an absence of Salmonella 
and helminth eggs when studying the microbiological 
quality of a final compost comprised of solid residues. 
Corrêa et al. (2007) also reported a reduction rate be-
tween 93% and 100% in the number of helminth eggs 
in composted sewage sludge samples. In addition, our 
results corroborate the findings obtained by Zhu et al. 
(2004), who observed the elimination of helminth eggs 
after 63 days of composting swine manure.

Although the composts in the present study fol-
lowed MAPA regulations regarding the attributes Sal-

monella sp. and helminth eggs, the most probable 
number (MPN) of thermotolerant coliforms showed a 
higher count than that recommended by the legislation, 
suggesting that composting alone, with reduced piles, is 
not enough to decrease the microbial load up to the rec-
ommended limit. However, it should be noted that the 
size of the pile interferes with the heat exchange with 
the environment, influencing its temperature. Thus, 
more massive piles reduce the surface exposed to the 
environment and, consequently, increase the sanitizing 
efficiency of the composting process.

Although animal waste is a sustainable alternative 
in agriculture, it needs to be environmentally safe. 
Therefore, it is necessary to use methods that guaran-
tee its sanitation. Ensuring quality and safety in the use 
of agricultural wastes is essential to prevent the spread 
of pathogenic bacteria and, consequently, a One Health 
issue. Thus, more studies are needed to evaluate the use 

of additional techniques that guarantee the reduction 
of thermotolerant coliforms up to the maximum limit 
established for organic agriculture, such as solarization 
(Ozdemir et al. 2020).

Conclusion

Composting provides a significant reduction in the ther-
motolerant coliform populations in horse beddings and 
organic and conventional poultry litter. However, the 
final composts exhibited a higher microbial load than 
required by the current Brazilian legislation for organic 
farming.

The Salmonella genus was absent in the raw wastes 
and throughout the composting period.

The composting process was effective in eliminat-
ing viable helminth eggs from all the analyzed animal 
wastes.
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