تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,558 |
تعداد مشاهده مقاله | 77,720,303 |
تعداد دریافت فایل اصل مقاله | 54,771,224 |
کنترل قند خون بیماران دیابتی نوع یک: دیدگاه تطبیقی فازی مقاوم | ||
روشهای هوشمند در صنعت برق | ||
مقاله 10، دوره 14، شماره 53، خرداد 1402، صفحه 171-188 اصل مقاله (987.76 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
زهرا کوچکی1؛ محمدرضا یوسفی* 2؛ خوشنام شجاعی3 | ||
1دانشکده مهندسی برق- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران | ||
2مرکز تحقیقات ریز شبکه های هوشمند- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران | ||
3مرکز تحقیقات پردازش دیجیتال و بینایی ماشین- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران | ||
چکیده | ||
کنترل قند خون بیماران دیابتی نوع یک در حضور نامعینیهای ساختاری و بیساختار در این مقاله مطالعه شده است. در راستای افزایش کارآمدی رویکرد کنترلی ارائه شده، فرض شده که تمام دینامیکهای توصیفکننده تنظیم قند خون بیماران دیابتی نوع یک کاملاً نامعین هستند. براساس توابع تقریبزن فازی مجهز شده به الگوریتم تطبیق و همچنین استفاده از رویکرد کاهش تعداد پارامترهای تطبیق، دینامیکهای نامعین مدل برگمن تقریب زده شده است. سپس براساس رویکرد کنترل خطیساز فیدبک و جبرانساز تطبیقی مقاوم، طراحی کنترلکننده خطیساز فیدبک مقاوم فازی بهمنظور تنظیم قند خون بیماران دیابتی نوع یک در حضور وعده غذایی برای اولین بار مورد بررسی قرار گرفته است. با استفاده از تئوری لیاپانوفی نشان داده شده که تمام سیگنالهای سیستم حلقه بسته کنترل قند خون بهصورت کراندار نهایی یکنواخت، پایدار هستند و همچنین قند خون بیماران دیابتی به کرانی از مقدار مطلوب همگرا شده است. در انتها، نتایج شبیهسازی نشاندهنده عملکرد مطلوب کنترلکننده در کاهش اثر اغتشاش وعده غذایی و همچنین رفتار مقاوم در برابر دینامیکهای نامعین و خطای تخمین وعده غذایی است. همچنین، عملکرد مطلوب کنترلکننده پیشنهاد شده در کنترل قند خون (نگه داشتن قند خون در محدوده مجاز 120-70 میلی-گرم در دسی لیتر) در مقایسه با برخی از مراجع نشان داده شده است. | ||
تازه های تحقیق | ||
- در این مقاله کنترل فازی تطبیقی مقاوم برای تنظیم قند خون بیماران دیابتی نوع یک ارائه شده است. - به منظور جبرانسازی نامعینیهای ساختاری و همچنین کاهش تعداد پارامترهای آموزشی سیستم فازی یک قانون تطبیق اسکالر ارائه شده است. - به منظور جبرانسازی نامعینیهای بیساختار، مانند وعده غذایی از جبرانساز تطبیقی مقاوم بهرهبرداری شده است. | ||
کلیدواژهها | ||
جبرانساز مقاوم؛ دیابت؛ کنترل تطبیقی فازی؛ کنترل خطی ساز فیدبک؛ مدل غیرخطی برگمن؛ وعده غذایی | ||
مراجع | ||
[1] E.H. Karam, E.H. Jadoo, "Design optimal modified internal model controller of blood glucose for type I diabetes", International Journal of Open Information Technologies, vol. 8, no. 6, pp. 34-40, June 2020. [2] B. Saeid, H.S. Ko, R. Balouchzadeh, H.F. Lee, Sarah Park, G. Kwon, "Neural network-based model predictive control for type 1 diabetic rats on artificial pancreas system", Medical & Biological Engineering and Computing, vol. 57, no. 1, pp. 177-191, Jan. 2019 (doi: 10.1007/s11517-018-1872-6). [3] A. Nath, R. Dey, "Robust observer based control for plasma glucose regulation in type 1 diabetes patient using attractive ellipsoid method", IET Systems Biology, vol. 13, no. 2, pp, 84-91, April. 2019 (doi: 10.1049/iet-syb.2018.5054). [4] B. Farahmand, M. Dehghani, N. Vafamand, "Fuzzy model-based controller for blood glucose control in type 1 diabetes: An LMI approach", Biomedical Signal Processing and Control, vol. 54, pp. 101-627, Sept. 2019 (doi: 10.1016/j.bspc.2019.101627). [5] D. Boiroux, T.B. Aradóttir, M. Hagdrup, N.K. Poulsen, H. Madsen, J.B. Jørgensen, "A bolus calculator based on continuous-discrete unscented Kalman filtering for type 1 diabetics", IFAC-Papers OnLine, vol. 48, no. 20, pp. 159-164, 2015 Jan. (doi: 10.1016/j.ifacol.2015.10.132). [6] A. Nath, R. Dey, "Robust guaranteed‐cost output feedback control of blood glucose in type 1 diabetes patient with intrapatient variability", Optimal Control Applications and Methods, vol. 12, no. 4, pp. 12-23, Sept. 2020 (doi: 10.1002/oca.2607). [7] A.K. Patra, A.K. Mishra, P.K. Rout, "Back-stepping model predictive controller for blood glucose regulation in type-I diabetes patient", IETE Journal of Research, vol. 66, no. 3, pp. 326-340, May. 2020 (doi: 10.1080/03772063.2018.1493404). [8] A. Nath, R. Dey, V.E. Balas, "Closed loop blood glucose regulation of type 1 diabetic patient using Takagi-Sugeno fuzzy logic control", Proceeding of the IWSCA, pp. 286-296, Cham, Aug. 2016. [9] A.G. Gallardo-Hernández, M.A. González-Olvera, C. Revilla-Monsalve, J.A. Escobar, M. Castellanos-Fuentes, R. Leder, "Rapid automatic identification of parameters of the bergman minimal model in sprague-dawley rats with experimental diabetes for adaptive insulin delivery", Computers in Biology and Medicine, vol. 108, pp. 242-248, May. 2019 (doi: 10.1016/j.compbiomed.2019.03.028). [10] C. Townsend, M.M. Seron, "Optimality of unconstrained pulse inputs to the bergman minimal model", IEEE Control Systems Letters, vol. 2, no. 1, pp. 79-84, Aug. 2019 (doi: 10.1109/LCSYS.2017.2734691). [11] A. Nath, R. Dey, C. Aguilar-Avelar, "Observer based nonlinear control design for glucose regulation in type 1 diabetic patients: An LMI approach", Biomedical Signal Processing and Control, vol. 47, pp.7-15, Jan. 2018 (doi: 10.1016/j.bspc.2018.07.020). [12] E.H, Karam, E.H. Eman, "Design modified second order sliding mode controller based on ST algorithm for blood glucose regulation systems", Applied Computer Science, vol. 16, no. 2, pp. 324-333, May. 2020 (doi: 10.23743/acs-2020-10). [13] S. Vakili, H. Toosian Shandiz, "Back-stepping sliding mode control design for glucose regulation in type 1 diabetic patients", International Journal of Nonlinear Analysis and Applications, vol. 10, no. 2, pp. 167-176, Dec. 2019 (doi: 10.22075/ijnaa.2019.4183). [14] W. Alam, Q. Khan, R-A. Riaz, R. Akmeliawati, I. Khan, K-S. Nisar, "Gain-scheduled observer-based finite-time control algorithm for an automated closed-loop insulin delivery system", IEEE Access, vol. 8, no.7, pp. 103088-103099, May. 2020 (doi: 10.1109/ACCESS.2020.2997776). [15] W. Alam, Q. Khan, R.A. Riaz, R. Akmeliawati, "Glucose–insulin stabilization in type-1 diabetic patient: A uniform exact differentiator–based robust integral sliding mode control approach", International Journal of Distributed Sensor Networks, vol. 15, no. 3, pp. 123-134, Mar. 2019 (doi: 10.1177/1550147719833573). [16] I. Hajizadeh, M.R. Askari, M. Sevil, N. Hobbs, R. Brandt, M. Rashid, A. Cinar, "Adaptive control of artificial pancreas systems for treatment of type 1 diabetes", Control Theory in Biomedical Engineering, vol. 1, no. 4, pp. 63-81, Jan. 2020 (doi: 10.1016/B978-0-12-821350-6.00003-2). [17] A. Nath, D. Deb, R. Dey, "Robust observer-based adaptive control of blood glucose in diabetic patients", International Journal of Control, vol. 4, no. 7, pp. 603-623, April 2020 (doi: 10.1080/00207179.2020.1750705). [18] A.A. Basha, S. Vivekanandan, "A fuzzy-based adaptive multi-input–output scheme in lieu of diabetic and hypertension management for post-operative patients: An human–machine interface approach with its continuum", Neural Computing and Applications, pp. 1-7, May 2020 (doi: 10.1007/s00521-020-04975-8). [19] N. Auwal, H-D. Muazu, I. Goni, A-M. Jingi, "Adaptive neuro-fuzzy system to determine the blood glucose level of diabetic", Mathematics and Computer Science, vol. 4, no. 3, pp. 63-76, Oct. 2019 (doi: 10.11648/j.mcs.20190403.11). [20] S. Ahmad, N. Ahmed, M. Iyas, W. Khan, "Supertwisting sliding mode control algorithm for developing artificial pancreas in type 1 diabetes patients", Biomedical Signal Processing and Control, vol .38, pp. 200-211, Sept. 2017 (doi: 10.1016/j.bspc.2017.06.009). [21] M. Shahvali, M.B Naghibi-Sistani, J. Askari, "Adaptive fault compensation control for nonlinear uncertain fractional-order systems: static and dynamic event generator approaches", Journal of the Franklin Institute, vol. 358. no. 12, pp. 6074-6100, 2021 (doi: 10.1016/j.jfranklin.2021.05.033). [22] R.N. Bergman, Y.Z. Ider, C.R. Bowden, C. Cobelli, "Quantitative estimation of insulin sensitivity", American Journal of Physiology-Endocrinology and Metabolism, vol. 236, no. 6, pp. 670-677. June 1979 (doi: 10.1152/ajpendo.1979.236.6.E667). [23] J.T. Sorensen, "A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes", Doctoral Dissertation, Massachusetts Institute of Technology, 1985. [24] C. Dalla Man, R.A. Rizza, C. Cobelli, "Meal simulation model of the glucose-insulin system", IEEE Trans. on Biomedical Engineering, vol. 54, no. 10, pp. 1740-1749, Sept. 2007 (doi: 10.1109/TBME.2007.893506). [25] H. K. Khalil. Nonlinear control. Pearson Higher, vol. 3, 2014. [26] M. Shahvali, M.B. Naghibi-Sistani, J. Askari, "Bipartite consensus control for fractional-order nonlinear multi-agent systems: An output constraint approach", Neurocomputing, vol. 397, no. 12, pp. 212-223, July 2020 (doi: 10.1016/j.neucom.2020.02.036). [27] M. Shahvali, M.B. Naghibi-Sistani, H.R. Modares, "Distributed consensus control for a network of incommensurate fractional-order systems", IEEE Control Systems Letters, vol. 3, no. 2. pp. 481-486, Mar. 2020 (doi: 10.1109/LCSYS.2019.2903227). [28] M. Shahvali, J. Askari. "Cooperative adaptive neural partial tracking errors constrained control for nonlinear multi‐agent systems", International Journal of Adaptive Control and Signal Processing, vol. 30, no.7, pp. 1019-1042, July 2016 (doi: 10.1002/acs.2657). [29] A. Nath, D. Deb, R. Dey. S. Das, "Blood glucose regulation in type 1 diabetic patients: an adaptive parametric compensation control-based approach", IET Systems Biology, vol. 12, no. 5, pp. 219-225, Sept. 2018 (doi: 10.11648/j.mcs.20190403.11). [30] S.T. Dinani, M. Zekri, M. Kamali, "Regulation of blood glucose concentration in type 1 diabetics using single order sliding mode control combined with fuzzy on‑line tunable gain, a simulation study", Medical Signals and Sensors, vol. 5, no. 3, pp. 131-140, 2015 (doi: 10.4103/2228-7477.161463). [31] M. Ghayoor, H. Pourghassem, "Proposing an automated system for differentiating between healthy individuals and patients with diabetic retinopathy", Journal of Intelligent Procedures in Electrical Technology, vol. 11, no. 44, pp. 1-19, March 2021 (in Persian). [32] S. Nasr, H. Mahmoodian, "Insulin drug regulation by general type 2 fuzzy controller with alpha plane", Journal of Intelligent Procedures in Electrical Technology, vol. 10, no. 37, pp. 39-48, June 2019 (dor: 20.1001.1.23223871.1398.10.37.4.8) (in Persian). [33] M. Khojandi-Jazi, N. Habibi, M. Harouni, "Estimation of re-hospitalization risk of diabetic patients based on radial base function (RBF) neural network method combined with colonial competition optimization algorithm", Majlesi Journal of Electrical Engineering, vol. 12, no. 1, pp. 109-116, Mar. 2018. | ||
آمار تعداد مشاهده مقاله: 1,218 تعداد دریافت فایل اصل مقاله: 414 |