Mathematical Analysis and its Contemporary Applications Volume 3, Issue 2, 2021, 15–26 doi: 10.30495/MACA.2021.1928647.1007 ISSN 2716-9898

On character amenability of weighted convolution algebras on certain semigroups

Kobra Oustad

ABSTRACT. In this work, we study the character amenability of weighted convolution algebras $\ell^1(S, \omega)$, where S is a semigroup of classes of inverse semigroups with a uniformly locally finite idempotent set, inverse semigroups with a finite number of idempotents, Clifford semigroups and Rees matrix semigroups. We show that for inverse semigroup with a finite number of idempotents and any weight ω , $\ell^1(S, \omega)$ is character amenable if each maximal semigroup of S is amenable. Then for a commutative semigroup S and $\omega(x) \geq 1$, for all $x \in S$. Moreover, we show that character amenability of $\ell^1(S, \omega)$ implies that S is a Clifford semigroup. Finally, we investigate the character amenability of the weighted convolution algebra $\ell^1(S, \omega)$, and its second dual for a Rees matrix semigroup.

1. Introduction

Let A be a Banach algebra and E be a Banach A-bimodule. We regards the dual space E^* as a Banach A-bimodule with the following module actions:

$$(a.f)(x) = f(x.a), \ (f.a)(x) = f(a.x) \ (a \in A, f \in E^*, x \in E).$$

The notion of φ -amenability for Banach algebras was introduced by Kaniuth, Lau and Pym in [11, 12], where $\varphi : A \longrightarrow \mathbb{C}$ is a character. Monfared in [18] introduced the notion of character amenability for Banach algebras and some interesting results are given in [19]. Let A be a Banach algebra over \mathbb{C} and $\varphi : A \longrightarrow \mathbb{C}$ be a character on A, that is, an algebra homomorphism from A in to \mathbb{C} , and let Φ_A denote the character space of A (that is, the set of all character on A). Approximate character amenability was introduced by Aghababa, Shi and Wu in [1] and Jabbari in [8], defined by characters on A, see [18, 19], for more details. Moreover, the character amenability of some versions of group algebras is investigated in [9]. These notions have been studied for various classes of Banach algebras, see [5, 11, 12],

²⁰²⁰ Mathematics Subject Classification. Primary 58B34, 58J42, 81T75.

Key words and phrases. Character amenability, Rees matrix semigroup, Weighted Rees matrix semigroup algebra, Clifford semigroup.

for more details. For smuch as character amenability is weaker than the classical amenability introduced by Johnson in [10], so all amenable Banach algebras are character amenable.

Module character amenability of Banach algebras which defines the notion of invariant functional concerning a Banach bimodule with compatible actions and applications to the semigroup algebras of an inverse semigroup is also introduced in [2]. It is shown in [13], that the character amenability of semigroup algebra $\ell^1(S)$ implies that the semigroup S is amenable and the authors focus on certain semigroups such as inverse semigroup, Rees semigroup, Clifford semigroup and Brandt semigroup and study the character amenability of $\ell^1(S)$ concerning the semigroup S.

Also in [22], Soroushmehr described the amenability of the weighted convolution algebra $\ell^1(S, \omega)$, where S is a regular Rees matrix semigroup and $\omega \geq 1$. No much work has been done to date on the character amenability version for weighted convolution algebra $\ell^1(S, \omega)$ on a semigroup S, as in the other notions for amenability. So this motivated us to see how the character amenability of $\ell^1(S, \omega)$ affects the structure of S. Thus, in this work, we study the character amenability of weighted convolution algebras on certain semigroups.

2. Preliminaries

We recall some standard notions from [3, 4]. Let A be a Banach algebra and E be a Banach A-bimodule. A continuous linear operator $D: A \longrightarrow E$ is a derivation if it satisfies D(ab) = D(a).b + a.D(b), for all $a, b \in A$. Given $x \in E$, the inner derivation $ad_x: A \longrightarrow E$ is defined by $ad_x(a) = a \cdot x - x \cdot a$, for all $a \in A$. According to the Johnson's original definition, a Banach algebra A is called *amenable*, if for every Banach A-bimodule E, every derivation from A into E^* (the dual of E) is inner. The concept of amenability introduced by B. E. Johnson in [10]. Let A be a Banach algebra, and let X be a Banach A-bimodule, we let $M_{\varphi_r}^A$ denote the class of Banach A-bimodule X for which the right module action of A on X is given by

$$x.a = \varphi(a)x \ (a \in A, x \in X, \varphi \in \Phi_A),$$

and $M_{\varphi_l}^A$ denote the class of Banach A-bimodule X for which the left module action of A on X is given by

$$a.x = \varphi(a)x \ (a \in A, x \in X, \varphi \in \Phi_A).$$

It is easy to see that the left module action of A on the dual module X^* is given by

$$a.f = \varphi(a)f \ (a \in A, f \in X^*, \varphi \in \Phi_A).$$

Thus, we note that $X \in M_{\varphi_r}^A$ (resp. $X \in M_{\varphi_l}^A$) if and only if $X^* \in M_{\varphi_l}^A$ (resp. $X^* \in M_{\varphi_r}^A$). Let A be a Banach algebra and let $\varphi \in \Phi_A$, we recall from [19, 18] that

- (i) A is left φ -amenable if every continuous derivation $D: A \longrightarrow X^*$ is inner for every $X \in M^A_{\varphi_r}$;
- (ii) A is right φ -amenable if every continuous derivation $D: A \longrightarrow X^*$ is inner for every $X \in M^A_{\varphi}$;
- (iii) A is left character amenable if it is left φ -amenable for every $\varphi \in \Phi_A$;
- (iv) A is right character amenable if it is right φ -amenable for every $\varphi \in \Phi_A$;
- (v) A is *character amenable* if it is both left and right character amenable.

We also recall that a semigroup is a non-empty set S with an associative binary operation $(s,t) \longrightarrow st$, $S \times S \longrightarrow S$ $(s,t \in S)$. Let S be a semigroup, S is said to be regular if for all $s \in S$, there is $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$. S is an inverse semigroup if such s^* exists and is unique for all $s \in S$. An element $p \in S$ is idempotent if $p^2 = p$. The set of idempotents in S is denoted by E(S). A semigroup S is semilattice if S is commutative and E(S) = S.

Let S be a semigroup. The semigroup algebra $\ell^1(S)$ is the completion in the ℓ^1 -norm of the algebra $\mathbb{C}S$, the Banach algebra generated by the semigroup S. For $s \in S$, we write $\delta_s = \chi_{\{s\}}$ for the indicator function of the set $\{s\}$. The convolution product * on $\ell^1(S)$ is uniquely defined by requiring that $\delta_s * \delta_t = \delta_{st}$ $(s, t \in S)$. There is always a character on the Banach algebra $\ell^1(S)$ that is the augmentation character $\varphi_S : \ell^1(S) \longrightarrow \mathbb{C}$ such that $f \mapsto f(s) \ s \in S$.

Let S be a semigroup. A continuous function $\omega : S \longrightarrow (0, \infty)$ is a *weight* on S if $\omega(st) \leq \omega(s)\omega(t)$, for all $s, t \in S$ and $\Omega(g) := \omega(g)\omega(g^{-1})$. Then

$$\ell^1(S,\omega) = \{ f = \sum_{s \in S} f(s)\delta_s : ||f||_\omega = \sum_{s \in S} |f(s)|\omega(s) < \infty \},$$

with $\|\cdot\|_{\omega}$ as a norm, is a Banach algebra which is called *weighted convolution algebra*.

3. Main results

In this section, we will consider the character amenability properties of weighted convolution algebras. First, we need the following results:

Theorem 3.1. [6, Theorem 2.3] Let S be a semigroup and ω be a weight on S.

- (i) If $\omega \geq 1$ and $\ell^1(S, \omega)$ is character amenable, then $\ell^1(S)$ is character amenable.
- (ii) If $\omega \leq 1$ and $\ell^1(S)$ is character amenable, then $\ell^1(S, \omega)$ is character amenable.

Corollary 3.2. [6, Corollary 2.5] Let $S = M^0(G, I)$ be the Brandt semigroup and ω be a weight on S. Then the following are equivalent:

- (i) $\ell^1(S,\omega)$ is character amenable.
- (ii) $\ell^1(S)$ is character amenable.

(iii) I is finite and in the case where |I| = 1, then G is amenable.

Using our main result, we extend some results of [13], to weighted convolution algebras.

Proposition 3.3. Let S be a semigroup, ω be a weight on S and $\omega \geq 1$. If $\ell^1(S, \omega)$ is character amenable, then S is amenable and regular.

PROOF. Since $\ell^1(S, \omega)$ is character amenable, by Theorem 3.1, $\ell^1(S)$ is character amenable, so by [13, Proposition 4.1(ii)], S is amenable and regular, as required. \Box

Corollary 3.4. Let S be a semigroup with E(S) finite, ω be a weight on S and $\omega \geq 1$. If $\ell^1(S, \omega)$ is character amenable, then it has an identity.

PROOF. By Proposition 3.3, S is regular and amenable. Thus from finiteness of E(S), there is a finite subset $F \subset E(S)$ such that

$$S = \cup \{ pSq : p, q \in F \}.$$

Set $A = \ell^1(S, \omega)$. There exist $m \in \mathbb{N}$, $p_1, \dots, p_m \in F$, and pairwise disjoint subsets T_i of S, for any $i \in \mathbb{N}_m$ such that $T_i \subset p_i S$ $(i \in \mathbb{N}_m)$ and $S = \bigcup \{T_i : i \in \mathbb{N}_m\}$. For each $f \in A$ and $i \in \mathbb{N}_m$, we have $f|_{T_i} = (\delta_{p_i} \star f)|_{T_i}$. Since $A = \ell^1(S, \omega)$, is character amenable, by [11, Proposition 1(i)], A has a bounded approximate identity. So A has a left approximate identity and from finiteness of F there is a sequence (f_n) in A such that

$$\|f_n \star \delta_p - \delta_p\|_1 < \frac{1}{n} \ (n \in \mathbb{N}, p \in F).$$

$$\tag{1}$$

We claim that (f_n) is a Cauchy sequence. Take $\lambda \in (A^*)_{[1]} = \ell^{\infty}(S, \frac{1}{\omega})_{[1]}$, and for $i \in \mathbb{N}_m$, set $\lambda_i = \lambda | T_i$, so that $\lambda_i \in (A^*)_{[1]}$. Clearly, we have $\lambda = \sum_{i=1}^m \lambda_i$. For k < n and $i \in \mathbb{N}_m$, we have

$$|\langle f_k - f_n, \lambda_i \rangle| = |\langle \delta_{p_i} \star (f_k - f_n), \lambda_i \rangle| \le \frac{2}{k}$$

and so $|\langle f_k - f_n, \lambda \rangle| \leq \frac{2m^2}{k}$. Thus $||f_k - f_n||_1 \leq \frac{2m^2}{k}$, giving the claim set $f = Lim_{n\longrightarrow\infty}f_n \in A$, and take $i \in \mathbb{N}_m$ and $t \in T_i$. Then, by (1), we have

$$f \star \delta_t = \lim_{n \to \infty} f_n \star \delta_{p_i} \star \delta_t = \delta_{p_i} \star \delta_t = \delta_t.$$

Since $S = \bigcup \{T_i : i \in \mathbb{N}_m\}$ it follows that f is a left identity of A. Similarly A has a right identity, and $\ell^1(S, \omega)$ has an identity. \Box

A semigroup S is called *left cancellative* if, for all $a, x, y \in S$, ax = ay implies that x = y.

Corollary 3.5. Let S be a left cancellative semigroup, ω be a weight on S and $\omega \geq 1$. If $\ell^1(S, \omega)$ is character amenable, then S is an amenable group.

PROOF. By Proposition 3.3, S is amenable and regular. Since S is regular, it follows that, for each $s \in S$, there exists $e_s \in E(S)$ such that $se_s = s$. Since Sis left cancellative, the element e_s is uniquely defined by this equation. Since Sis amenable, it is left reversible [20, Proposition (1.23)]; this means that, for each pair $\{s,t\}$ in S, there exists $x \in sS \cap tS$, say x = sy = tz for some $y, z \in S$. Clearly $yse_x = ys$ and so $se_x = s$, because S is left cancellative. Thus $e_x = e_s$. Similarly $e_x = e_t$, and so $e_s = e_t$. Thus there is a unique element $e \in S$ such that se = s ($s \in S$).

Let $s \in S$. Then $e^2s = es$, and so es = s, again by left cancellativity. Thus e is the identity of S. Take $s \in S$. By the regularity of S, there exists $t \in S$ with sts = s. By replacing t by sts we may suppose that also tst = t. We have ts = st = e by left cancellativity, and so $s = t^{-1} \in S$. Thus S is a group.

Theorem 3.6. Let S be an inverse semigroup with E(S) finite and ω be a weight on S. If each maximal semigroup of S is amenable, then $\ell^1(S, \omega)$ is character amenable.

PROOF. Since E(S) is finite and S is inverse, S has a principal series

 $S = S_1 \supset S_2 \supset S_3 \supset \dots \supset S_{m-1} \supset S_m = K(S)$

of ideals of S, where K(S) is the minimum ideal, see [4, Theorem 3.12]. Thus, $\frac{S_i}{S_{i+1}}$ is a simple inverse semigroup with a finite number of idempotents, and so is a group. Also, for i = 1, 2, ..., n - 1, $\frac{S_i}{S_{i+1}}$ is 0-simple with a finite number of idempotents, and so is a completely 0-simple inverse semigroup, that is a Brandt semigroup. By Corollary 3.2, $\ell^1(S, \omega)$ is character amenable if and only if $\ell^1(S)$ is character amenable and by proof of [13, Proposition 3.1], $\ell^1(S)$ is character amenable if and only if $\ell^1(\frac{S_i}{S_{i+1}})$ is character amenable for i = 1, 2, ..., n - 1. For i = 1, 2, ..., n - 1, let G_i be the group of the Brandt semigroup $\frac{S_i}{S_{i+1}}$ and $\ell^1(\frac{S_i}{S_{i+1}})$ is amenable if G_i is amenable for i = 1, 2, ..., n - 1. So $\ell^1(S, \omega)$ is character amenable if G_i is amenable and the groups G_i are maximal subgroups of S.

For an inverse semigroup S and $p \in E(S)$, we set

$$G_p = \{s \in S ; ss^{-1} = s^{-1}s = p\}.$$

Then G_p is a group with identity p. It is called the maximal subgroup of S at p. We recall that a Clifford semigroup is an inverse semigroup S for which $ss^{-1} = s^{-1}s$ ($s \in S$). For a Clifford semigroup S, we have $s \in G_{ss^{-1}}$, and so S is a disjoint union of the groups G_p ($p \in E(S)$), see [7], for more details.

Corollary 3.7. Let $S = \bigcup_{p \in E(S)} G_p$ be a Clifford semigroup such that E(S) is finite and ω be a weight on S. Then $\ell^1(S, \omega)$ is character amenable if G_p is amenable for each $p \in E(S)$.

PROOF. This follows from Theorem 3.6.

The following example shows that finiteness of E(S) is necessary.

Example 3.1. Let $S = \bigcup_{e \in E(S)} G_e$ be a Clifford semigroup such that E(S) is uniformly locally finite and each G_e is amenable, ω be a weight on S and $\omega \ge 1$. Then the weighted convolution algebra $\ell^1(S, \omega)$ is not character amenable if E(S)is not finite; If $\ell^1(S, \omega)$ is character amenable, by hypothesis and theorem 3.1, $\ell^1(S)$ is character amenable. But since

$$\ell^1(S) \cong \ell^1 - \bigoplus_{e \in E(S)} \ell^1(G_e).$$

(see [21, Theorem 2.16] and [1, Proposition 6.3]), $\ell^1(S)$ is not character amenable, by [1, Proposition 6.3], and this is a contradiction.

Theorem 3.8. Let S be a commutative semigroup. Let ω be a weight on S and $\omega \geq 1$. If $\ell^1(S, \omega)$ is character amenable, then S is a Clifford semigroup.

PROOF. By Proposition 3.3, S is regular. A commutative regular semigroup is an inverse semigroup which is a semilattice of abelian group. Thus $S = \bigcup_{\alpha \in Y} S_{\alpha}$, is a Clifford semigroup.

Corollary 3.9. Let S be a commutative semigroup such that E(S) is finite and let ω be a weight on S and $\omega \geq 1$. Then the following statements are equivalent:

- (i) $\ell^1(S,\omega)$ is character amenable;
- (ii) S is a Clifford semigroup.

PROOF. By Theorem 3.8, the implication $(i) \rightarrow (ii)$, is clear.

 $(ii) \longrightarrow (i)$ Let S be a Clifford semigroup, indeed, as S is a commutative Clifford semigroup, each maximal subgroup of S is commutative, and therefore it is amenable. So, by Theorem 3.6, $\ell^1(S, \omega)$ is character amenable.

Let P be a partially ordered set. For $p \in P$, we define $(p] = \{x : x \leq p\}$ and $[p] = \{x : p \leq x\}$. Then P is locally finite if (p] is finite, for each $p \in P$, and P is locally C-finite, for some constant $C \geq 1$, if |(p)| < C, for each $p \in P$. A partially ordered set that is locally C-finite for some C is uniformly locally finite.

Let S be an inverse semigroup. Then S is [locally finite/ C-locally finite/ uniformly locally finite] respectively if the partially ordered set $(E(S), \leq)$ has the corresponding property, see [21], for more details.

Proposition 3.10. Let S be a inverse semigroup such that $(E(S), \leq)$ is uniformly locally finite and ω be a weight on S and $\omega \geq 1$. If $\ell^1(S, \omega)$ is character amenable, then each maximal subgroup of S is amenable.

20

PROOF. Let $\ell^1(S, \omega)$ be character amenable, then by Theorem 3.1, $\ell^1(S)$ is character amenable. Since $(E(S), \leq)$ is uniformly locally finite, (S, \leq) is uniformly locally finite by [21, Proposition 2.14] and now using [21, Theorem 2.18], we have

$$\ell^1(S) \cong l^1 - \bigoplus \{ \mathbb{M}_{E(D_\alpha)}(\ell^1(G_{p_\alpha})) : \alpha \in J \},\$$

and so, for each $\alpha \in J$, $\mathbb{M}_{E(D_{\alpha})}(\ell^{1}(G_{p_{\alpha}}))$ is a homomorphic image of $\ell^{1}(S)$. Then by [18, Theorem 2.6(i)], we have

$$\mathbb{M}_{E(D_{\alpha})}(\ell^{1}(G_{p_{\alpha}})) \cong \mathbb{M}_{E(D_{\alpha})}(C) \otimes (\ell^{1}(G_{p_{\alpha}}))$$

is character amenable for each $\alpha \in J$. Thus $\mathbb{M}_{E(D_{\alpha})}(\ell^{1}(G_{p_{\alpha}}))$ is left character amenable. Moreover, $\ell^{1}(G_{p_{\alpha}})$ is left character amenable by [13, Corollary 3.3]. So using [18, Corollary 2.4], $\ell^{1}(G_{p_{\alpha}})$ is left character amenable if and only if $G_{p_{\alpha}}$ is an amenable group.

4. Weighted Rees matrix semigroup algebras

In this section, we give results on weighted Rees semigroup algebras. Rees semigroups are described in [4, 7, 17, 14]. Indeed, let G be a group, $m, n \in N$, and $G^0 = G \cup \{0\}$. Let

$$S = \{ (g)_{ij} : g \in G, 1 \le i \le m, 1 \le j \le n \} \cup \{ 0 \},\$$

where $(g)_{ij}$ denotes the element of $M_{m \times n}(G^0)$ with g in the $(i, j)^{th}$ place and 0 elsewhere and 0 is a matrix with 0 everywhere. Let $P = (p_{ji})$ be an $n \times m$ matrix over G^0 . Then the set S with the composition $(g)_{ij} \circ 0 = 0 \circ (g)_{ij} = 0$ and $(g)_{ij} \circ$ $(h)_{lk} = (gp_{jl}h)_{ik}$, $((g)_{ij}, (h)_{lk} \in S)$ forms a semigroup which is called a *Rees matrix* semigroup with a zero over G, and it will be denoted by $S = M^0(G, P, m, n)$. The matrix P is called the sanwich matrix in each case. We write $S = M^0(G, P, n)$ for $S = M^0(G, P, n, n)$ in this case where m = n.

The above sandwich matrix P is *regular* if every row and column contains at least one entry in G; the semigroup $S = M^0(G, P, m, n)$ is regular as a semigroup if and only if the sandwich matrix is regular.

In [4], the Rees matrix semigroup algebra $\ell^1(S)$ is described as follows: for $g \in G$, $(g)_{ij}$ is identified with the element of $M_{m \times n}(\ell^1(G))$ which has δ_g in the $(i, j)^{th}$ place and 0 elsewhere, and \circ is identified with δ_0 . Furthermore, $P \in M_{n \times m}(G^0)$ is identified with a matrix $P \in M_{n \times m}(\ell^1(G))$ as follows: if the initial matrix P has $g \in G$ in the $(i, j)^{th}$ -position, then the new matrix P has the point mass δ_g in the $(i, j)^{th}$ -position; if the first matrix P has 0 in the $(i, j)^{th}$ -position, then the new matrix P has 0 in the $(i, j)^{th}$ -position. Using this identification, it is shown that $\frac{\ell^1(S)}{\mathbb{C}\delta_0}$ is isometrically isomorphic to the Munn algebra $M(\ell^1(G), P, m, n)$, where $\mathbb{C}\delta_0$ is a one-dimensional ideal. $\frac{\ell^1(S)}{\mathbb{C}\delta_0} = M(\ell^1(G), P, m, n)$, is unital. With m = n,

since $M(\ell^1(G), P, n, n) = M(\ell^1(G), P, n)$, is also unital and so the Munn algebra $M(\ell^1(G), P, n)$, is topologically isometric to $M_n(\ell^1(G))$, see [4], for more details.

Let S be completely 0-simple with finitely many idempotents, and let ω be a weight on S (not necessary greater than 1). Then there is a maximal subgroup G of S such that

$$S \simeq M^0(G, P, m, n),$$

and

$$\frac{\ell^1(S,\omega)}{\mathbb{C}\delta_0} \simeq M(\ell^1(G,\omega), P, m, n),$$

see [22, Theorem 2.1], for more details. Let G be a group, and let ω be a weight on G. A weight on G is said to be symmetric if $\omega(t^{-1}) = \omega(t)$, for every $t \in G$.

The following result is very useful in the proof of our main result in this section and it's proof follows from [6, Theorem 2.4].

Theorem 4.1. Let S be a semigroup with a zero element and ω be a weight on S. If $\ell^1(S, \omega)$ is character amenable, then $\ell^1(S)$ is character amenable.

Theorem 4.2. Let $S = M^0(G, P, I, J)$ and ω be a symmetric weight on S. Then the following statements are equivalent:

- (i) $\ell^1(S, \omega)$ is character amenable.
- (ii) $\ell^1(G,\omega)$ is character amenable, $|I| = |J| < \infty$ and P is invertible.
- (iii) $\ell^1(S)$ is character amenable and Ω is bounded on G.

PROOF. $(i) \longrightarrow (ii)$ Let $\ell^1(S, \omega)$ be character amenable. By Theorem 4.1, $\ell^1(S)$ is character amenable and so is left character amenable. Then by [13, Theorem 4.11], $\ell^1(S)$ is amenable. Hence, by [4], $|I| = |J| = n < \infty$ and P is invertible and the equality

$$\frac{\ell^1(S,\omega)}{\mathbb{C}\delta_0} \simeq M(\ell^1(G,\omega), P, n)$$

shows that $M(\ell^1(G, \omega), P, n)$ is character amenable, by [15, Proposition 3.1]. Then $\ell^1(G, \omega)$ is character amenable, by [13, Corollary 3.3].

 $(ii) \longrightarrow (iii)$ Suppose that $\ell^1(G, \omega)$ is character amenable. By [16, Corollary 5], $\ell^1(G, \omega)$ is amenable and by [16, Proposition 4], G is amenable and Ω is bounded on G.

Since $\frac{\ell^1(S)}{\mathbb{C}\delta_0}$ is isometrically isomorphic to the Munn algebra $\mathbb{M}_n(\ell^1(G))$, and amenability of G shows that $\mathbb{M}_n(\ell^1(G))$ is amenable, see [10]. Then $\ell^1(S)$ is amenable and so it is character amenable, as required.

 $(iii) \longrightarrow (i)$ Let $\ell^1(S)$ be character amenable. By [13, Theorem 4.11], $\ell^1(S)$ is amenable and the amenability of $\ell^1(S)$ implies that $\frac{\ell^1(S)}{\mathbb{C}\delta_0} \simeq \mathbb{M}_n(\ell^1(G))$, where |I| = |J| = n. Thus, $\mathbb{M}_n(\ell^1(G))$ is amenable, and so G is amenable. Amenability

22

of G with the boundedness of ω on G implies that $\ell^1(G, \omega)$ is amenable. We recall that $\frac{\ell^1(S, \omega)}{\mathbb{C}\delta_0} \simeq \mathbb{M}_n(\ell^1(G, \omega))$ and by [21, Theorem 2.7], $\mathbb{M}_n(\ell^1(G, \omega))$ is amenable, then $\ell^1(S, \omega)$ is amenable, so $\ell^1(S, \omega)$ is character amenable, as required. \Box

Corollary 4.3. Let $S = M^0(G, P, n)$ be a Rees matrix semigroup with a zero over the group G, sandwich matrix P and ω be a weight on S. Then $\ell^1(S, \omega)$ is character amenable if and only if it is amenable.

PROOF. Suppose that $\ell^1(S, \omega)$ is character amenable, then by Theorem 4.2, $\ell^1(S)$ is character amenable and Ω is bounded on G. Since $\ell^1(S)$ is character amenable, $\frac{\ell^1(S)}{\mathbb{C}\delta_0}$ is character amenable by [15, Proposition 3.1]. Also, since $\frac{\ell^1(S)}{\mathbb{C}\delta_0}$ is isomorphic to $\mathbb{M}_n(\ell^1(G))$, $\mathbb{M}_n(\ell^1(G))$ is character amenable and so $\mathbb{M}_n(\ell^1(G))$ is left character amenable. Hence, by [13, Proposition 3.4], $\mathbb{M}_n(\ell^1(G))$ is amenable and so $\frac{\ell^1(S)}{\mathbb{C}\delta_0}$ is amenable. Then $\ell^1(S)$ is amenable. Now, by [22, Theorem 3.6], $\ell^1(S, \omega)$ is amenable. The converse is clear.

Notation 4.1. Let S be a semigroup, I be an ideal of S and ω be a weight on S. For $s, t \in S$, set $s \sim t$ either if s = t or $s, t \in I$. Clearly, \sim is an equivalence relation on S; the equivalence class containing s is denoted by [s]. Let $s, t \in S$ and define [s][t] = [st]. Evidently, this gives a well-defined semigroup operation on the set of equivalence classes S/\sim . So one may form the quotient semigroup S/I with the zero element I. Moreover, the map $S \longrightarrow S/I$, $s \mapsto [s]$ is an epimorphism, see [7, 22], for more details.

Define $\tilde{\omega} : S/I \longrightarrow \mathbb{C}$, Such that $\tilde{\omega}([s]) = 1$ for all $s \in I$ and $\tilde{\omega}([s]) = \omega(s)$ for all $s \in S - I$. It is easy to see that $\tilde{\omega}$ is a weight on S/I. Now, we need the following result.

Lemma 4.4. [22, Lemma 3.1] Let S be a semigroup, I be an ideal of S and ω be a weight on S. Then $\ell_0^1(I, \omega)$ is an ideal of $\ell^1(S, \omega)$ and

$$\ell^1(S/I,\tilde{\omega}) \cong \ell^1(S,\omega)/\ell^1_0(I,\omega);$$

in particular, when S = I,

$$\ell^1(S,\omega)/\ell^1_0(S,\omega) \simeq \mathbb{C}.$$

Lemma 4.5. Let S be a semigroup, I be an ideal of S and ω be a weight on S.

- (i) If $\ell^1(S, \omega)$ is character amenable, then $\ell^1(S/I, \tilde{\omega})$ is character amenable.
- (ii) If both $\ell^1(S/I, \tilde{\omega})$ and $\ell^1_0(I, \omega)$ are character amenable, then $\ell^1(S, \omega)$ is character amenable.
- (iii) If $\ell^1(S, \omega)$ is character amenable and $\ell^1_0(I, \omega)$ has a bounded approximate identity, then $\ell^1_0(I, \omega)$ is character amenable.

PROOF. By [23, Theorem 3.1.1] and [15, Proposition 3.1] the proof is clear. \Box

Theorem 4.6. Let S be a semigroup and ω be a symmetric weight on S. Then the following statements are equivalent:

- (i) $\ell^1(S,\omega)$ is character amenable;
- (ii) $\ell^1(S)$ is character amenable and Ω is bounded on every maximal subgroup G of S.

PROOF. $(i) \longrightarrow (ii)$ Let $\ell^1(S, \omega)$ be character amenable. By [4], S has a principal series

$$S_1 \trianglelefteq S_2 \trianglelefteq S_3 \trianglelefteq \dots \oiint \oiint S_{n-1} \trianglelefteq S_n = S.$$

such that each quotient S_{j+1}/S_j is a regular Rees matrix semigroup of the form $M^0(G_i, P_i, n_i)$, for each *i*, where $n_i \in \mathbb{N}$ and $S_1 \cup \{G_i : 2 \leq n\}$ is the set of all maximal subgroups of *S*. Furthermore, S_1 is an ideal subgroup of *S*. $\ell_0^1(S_1, \omega)$ is an ideal of $\ell^1(S, \omega)$ and $\ell^1(S/S_1, \tilde{\omega})$ are character amenable (see Lemma 4.5). Since S_1 is a group, $\ell^1(S_1, \omega)$ has a bounded approximate identity and by Lemma 4.5, $\ell^1(S_1, \omega)$ is character amenable. Since ω is symmetric, by [15, Proposition 5.3 (1)], $\ell^1(S_1, \omega)$ is amenable. Thus by [16, Proposition 4], S_1 is amenable group and Ω is bounded on S_1 . By [22, Theorem 2.1], for $2 \leq i \leq n$, we have

$$\ell^1(S_{i+1}/S_i, \tilde{\omega}) \simeq M(\ell^1(G_i, \omega), P_i, n_i)/\mathbb{C}\delta_0.$$

Since $\ell^1(S_{i+1}/S_i, \tilde{\omega})$ is character amenable, $M(\ell^1(G_i, \omega), P_i, n_i)$ is character amenable and so $\ell^1(G_i, \omega)$ is character amenable. Now, by Theorem 4.2, $\ell^1(S)$ is character amenable and Ω is bounded on G_i . So, Ω is bounded on every maximal subgroup G on S.

 $(ii) \longrightarrow (i)$ Let $\ell^1(S)$ be character amenable. By [13, Proposition 4.1(ii)], S is amenable. Hence, S_1 is amenable group. From boundedness of Ω on S_1 , we have $\ell^1(S_1, \omega)$ is amenable. Then by the same reasons in the proof of [22, Theorem 3.6], $\ell^1(S, \omega)$ is amenable and so it is character amenable.

Proposition 4.7. Let $S = M^0(G, P, I, J)$ and ω be a weight on S. Then the following statements are equivalent:

- (i) $\ell^1(S, \omega)^{**}$ is character amenable.
- (ii) S is finite, |I| = |J| = n and P is invertible.
- (iii) $\ell^1(S)$ is character amenable and S is finite.

PROOF. $(i) \longrightarrow (ii)$ Let $\ell^1(S, \omega)^{**}$ is character amenable, by [15, Theorem 4.5], $\ell^1(S, \omega)$ is character amenable. The definition of Rees matrix semigroup, shows that S has a zero element, so by Theorem 4.1, $\ell^1(S)$ is character amenable. Now, by [13, Theorem 4.11], $\ell^1(S)$ is amenable. This shows that |I| = |J| = n and P is invertible by [4]. By corollary 4.3, $\ell^1(S, \omega)$ is amenable. Now, by using similar argument in [22, Theorem 3.7], we show that S is finite.

 $(ii) \longrightarrow (iii)$ Since S is finite, G is finite and so G is amenable. By Johnson's Theorem [10], $\ell^1(G)$ is amenable. Then $\mathbb{M}_n(\ell^1(G))$ is amenable, and this follows from the above isometric isomorphism

$$\frac{\ell^1(S)}{\mathbb{C}\delta_0} \simeq M(\ell^1(G), P, m, n).$$

Then $\ell^1(S)$ is amenable and so it is character amenable.

 $(iii) \longrightarrow (i)$ The finiteness of S implies that, ω is bounded on the whole of S. and so, $\ell^1(S,\omega) \simeq \ell^1(S)$. Thus, $\ell^1(S)$ is finite-dimensional and $\ell^1(S) \simeq \ell^1(S,\omega)^{**}$, so $\ell^1(S,\omega)^{**}$ is character amenable by [15, Proposition 3.1], as required. \square

References

- [1] H. Pourmahmood-Aghababa, L. Y. Shi and Y. J. Wu, Generalized notions of character amenability, Acta Math. Sinica, English Series, 29(7)(2013), 1329-1350.
- [2] A. Bodaghi and M. Amini, Module character amenability of Banach algebras, Arch. Math. (Basel), **99**(2012), 353-365.
- [3] H. G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monographs, New Series, Volume 24, The Clarendon Press Oxford, 2000.
- [4] H. G. Dales, A. T. Lau and D. Strauss, Banach algebras on semigroups and their compactifi*cations*, Mem. Amer. Math. Soc., **205**, 2010.
- [5] G. H. Esslamzadeh, Banach algebra structute and amenability of a class of matrix algebra with application, J. Funct. Anal., 161(1999), 361-383.
- [6] M. Essmaili, M. Rostami, Amenability of weighted semigroup algebrs based on character, The 46th Annual Iran. Math. Conf., 2015.
- [7] J. M. Howie, Fundamentals of semigroup theory, London Mathematical Society Monographs, Volume 12, The Clarendon Press Oxford, 1995.
- [8] A. Jabbari, Approximate character amenability of Banach algebras, Stud. Univ. Babes-Bolyai Math., **57**(3)(2012), 409-420.
- [9] A. Jabbari and A. Ebadian, Some notions of amenability of weighted Segal algebras, U. P. B. Sci. Bull., Series A., **77**(4)(2015), 57-64.
- [10] B. E.Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127, 1972.
- [11] E. Kaniuth, A. T. Lau and J. S. Pym, On character amenability of Banach algebras, J. Math. Anal. Appl., 344(2008), 942-955.
- [12] E. Kaniuth, A. T. Lau and J. S. Pym, On φ -amenaibility of Banach algebras, Math. Proc. Cambridge Philos. Soc., 144(2008), 85-96.
- [13] S. M. Maepa and O. T. Mewomo, On character Amenability of semigroup algebras, Q. Math., **39**(2015), 307-318.
- [14] O. T. Mewomo, On n-weak amenability of Rees semigroup algebras, Proc. Indian Acad. Sci. Math. Sci., 118(4)(2008), 547-555.
- [15] O. T. Mewomo, Note on character amenability in Banach algebras, Math. Reports, **19**(69)(3)(2017), 293-312.
- [16] O. T. Mewomo and S. M. Maepa, On character amenability of Beurling and second dual algebras, Acta Universitatis Apulensis, **38**(2014), 67-80.
- [17] O. T. Mewomo and O. J. Ogunsola, On n-weak amenability of semigroup algebras, J. Nigerian Math. Soc., **32**(2013), 289-301.

25

- [18] M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Cambridge philos. Soc., 144(2008), 697-706.
- [19] Z. Hu, M. S. Monfared and T. Traynor, On character amenable of Banach algebra, Studia Math., 193(1)(2009), 53-78.
- [20] A. L. T. Paterson, Amenability, American Mathematical Society, Providence, RI, 1988.
- [21] P. Ramsden, Biflatness of semigroup algebras, Semigroup Forum, 79(2009), 515-530.
- [22] M. Soroshmehr, Weighted Ress matrix semigroup and their applications, Arch. Math., 100(2013), 139-147.
- [23] J. Zhang, Character amenable Banach algebras, Ph.D Thesis, University of Windsor, 2012

DEPARTMENT OF MATHEMATICS, DEHDASHT BRANCH, ISLAMIC AZAD UNIVERSITY, DEHDASHT, IRAN kobra.ostad@gmail.com

> Received: April 2021 Accepted: May 2021