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Abstract. The purpose of this article is to clarify the concept of semi-interior

points of positive cones by presenting some results and examples in this context.

Moreover, the new concept of E(s)-distance spaces is defined, which generalizes

E-metric spaces. In addition, some coincidence point results have been obtained

that extend and generalize some known results in the literature.

1. Introduction

Over the past several decades, fixed point theory in ordered normed spaces played

an important role in optimization theory, game theory, variational inequalities, dy-

namical systems, fractals, graph theory, models in economy, computer science and

many other fields. In 2007, Huang and Zhang [9] introduced the concept of cone

metric space, in which convergent and Cauchy sequences were defined in terms of

interior points in the ordered Banach space (see also [1]). In 2012, Rawashdeh et

al. [3] used ordered normed space as an alternative of Banach space and introduced

the concept of E-metric space, also see on example [2]. In most of the results, E is

considered as a Banach space with a solid cone, only few results in literature could

be found in which the non-solid cones were considered [13, 14]. Kunze [14] used

the concept of quasi-interior points of P in non solid cones.

Recently in 2017, the concept of semi-interior points was defined by Polyrakis

[16]. According to Proposition 3.2 of [4] any semi-interior point of E+ is also an

interior point of E+ with respect to another norm |‖.‖| of E which coincides with the

initial norm ‖.‖ of E in E+. The class of cones with semi-interior point and empty in-

terior is a class of cones larger than the one with nonempty interior as the examples

of [4]. It is worth noting that fixed points results for ordered normed spaces can also
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proved for this larger class of cones with semi-interior points. In 2019, Mehmood et

al. [15] proved some fixed point results in the frame of E-metric spaces by inserting

non-solid cones.

In this article we define E(s)-distance space and generalize the results of [15]

in the settings of E(s)-distance space with non-solid and non-normal cones. Also,

some coincidence point results have been obtained that extend and generalize some

known results in the literature.

2. The E-metric space

Throughout in this article, let E be a ordered normed space with a norm ‖.‖ and

E+ be a positive cone, such that for κ, η ∈ E,κ � η if and only if η − κ ∈ E+. The

notion κ ≺ η means that κ � η and κ 6= η, while κ � η stands for η−κ ∈ int(E+).

We start with the basics of ordered normed spaces and E-metric spaces.

Definition 2.1. [3, 15] A vector space E over the set of real numbers, with a

partial order relation � called is an ordered space if it satisfies these axioms

(1) for all κ, η and ϑ ∈ E, κ � η implies κ + ϑ � η + ϑ,

(2) for all a ∈ R+ and κ ∈ E, 0E � κ implies 0E � aκ. e Moreover, if E is

equipped with a norm ‖.‖ , then E is called a normed ordered space.

Now we include the definition of E-metric space defined in [3].

Definition 2.2. LetM be a nonempty set and E an ordered space, over the real

scalars. An ordered E-metric onM is a function dE :M×M→ E such that for all

κ, η and ϑ ∈M,

(1) dE (κ, η) � 0E and dE (κ, η) = 0E if and only if κ = η,

(2) dE (κ, η) = dE (η,κ) ,

(3) dE (κ, η) � dE (κ, ϑ) + dE (ϑ, η) .

Then the pair (M, dE) is called E-metric space.

Remark 2.1. In an E-metric space, E+ is a closed [3, Proposition 2.6]. Also,

set int(E+) can be empty [3, Example 2.8].

3. The positive cones and semi-interior points

In this section, we present the notion of semi-interior points of the positive cone

E+ of an ordered norm space E. Non-trivial examples for cones with empty interior

but having semi-interior points have been discussed in [4, 15]. Here we provide some

examples and remarks to elaborate this concept. The concept of semi-interior points

have been defined by Polyrakis [16] and have been announced in Paris 2014 during

the XXII European Workshop on General Equilibrium Theory, in his discussion on

”Cones with semi-interior points and second welfare theorem”.
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Definition 3.1. Let E be an ordered normed space then any subset E+ of E is

called positive cone if it satisfies these axioms:

(1) a, b ∈ R, a, b ≥ 0,κ, η ∈ E+ implies aκ + bη ∈ E+,

(2) if κ ∈ E+ and −κ ∈ E+ then κ = 0E.

Definition 3.2. [4] The point κ0 ∈ E+ is a semi-interior point of E+ if there

exists a real number ρ > 0 such that

κ0 − ρU+ ⊆ E+,

where U+ is a positive part of unit ball and is defined as a common part of U and

E+, where

U = {κ ∈ E : ‖κ‖ ≤ 1} .

Clearly any interior point of E+ is a semi-interior point. The set of semi-interior

points of E+ is denoted by (E+)
	
, for κ, η ∈ E+, κ≪ η if and only if η−κ ∈ (E+)

	
.

Definition 3.3. [15]Let E be an ordered space with (E+)
	

is nonempty and

(M, dE) be an E-metric space. Let (κν) be a sequence in M and κ ∈M. Then

(i) (κν) e-converges to κ whenever for every e≫ 0E, there exists k ∈ N such

that dE (κν ,κ)≪ e for all ν ≥ k;

(ii) (κν) is e-Cauchy whenever for every e≫ 0E, there exists a natural number

k such that dE (κν ,κµ)≪ e for all ν, µ ≥ k;

(iii) (M, dE) is e-complete if every e-Cauchy sequence is e-convergent.

We give some examples of positive cones with empty interior but having semi-

interior points.

Example 3.4. In R3, consider a subspace E = {(κ,−κ,κ) : for all κ ∈ R} .
Then E+ = {(0, 0, 0)} by using the ordering property

(κ1,κ2,κ3) ≤ (η1, η2, η3) if and only if κi ≤ ηi for i = 1, 2, 3,

of R3. Clearly int (E+) = φ. Because zero element of E cannot be in int (E+) . Now

for semi-interior points, let κ0 = (0, 0, 0) ∈ E+, clearly κ0 ∈ U , where

U = {κ ∈ E : ‖κ‖ ≤ 1} .

So κ0 belongs to the intersection of U+ and E+. Hence

κ0 − ρU+ ⊆ E+.

Which means κ0 is a semi-interior point of E+. Thus we have int (E+) = ∅ and

(E+)
	 6= ∅.

Example 3.5. Consider a subspace, E = {(κ, η, ϑ) ∈ R3 : κ + η + ϑ = 0} of R3,

then E+ = {(0, 0, 0)} . By using the same arguments as of above example we can

show that int (E+) = ∅ and (E+)
	

= {(0, 0, 0)} .
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Now, let us compare positive cone E+ and cone P defined in [9].

Remark 3.1. (1) A positive cone can be zero, i.e, E+ = {0E} as shown in

the above examples, whereas cone P 6= {0} .
(2) Positive cone is not necessarily a closed set.

Example 3.6. Let E = R2 and E+ = {(κ1,κ2) ∈ R2 : κ1 > 0} ∪ {(0, 0)} is a

positive cone but it is not closed.

Remark 3.2. From above remarks we can conclude that a positive cone is not

necessarily a cone defined in [9].

Remark 3.3. Let E be an ordered space having a norm and E+ be a set of

positive elements of E, then the zero element of E+ is neither in int (E+) nor in

(E+)
	
. However it belongs to (E+)

	
only when E+ = {0E} . This fact can be derived

by using the definition of semi-interior point. If κ0 = 0E then −ρU+ ⊆ E+, which is

not possible as E+ is a set of positive elements of E. So 0E /∈ (E+)
	

when E+ 6= {0E} .

Proposition 3.4. Let (M, dE) be an E-metric space and (κν)ν∈N be an e-convergent

sequence in M then E+ is not a normal cone provided that limit of e-convergent se-

quence is not unique.

Proof. Assume that limit of convergent sequence is not unique. We argue by

contradiction that E+ is a normal cone with normal constant M. Start with ε > 0

and let e ∈ (E+)
	

with ‖e‖ < ε
Mu

for u ∈ N. Since (κν)ν∈N is e-convergent sequence

in M. So there exist N1, N2 ∈ N such that

dE (κν , p)≪
e

2
for all ν ≥ N1

and

dE (κν , q)≪
e

2
for all ν ≥ N2.

So,

dE (p, q) � dE (p,κν) + dE (κν , q)

≪
e

2
+

e

2
= e.

Since 0E ≪ dE (p, q) ≪ e, by [8, Proposition 1], 0E � dE (p, q) � e and E+ is a

normal cone, we have ∥∥dE (p, q)
∥∥ ≤M ‖e‖ < ε

u
.

Applying limit u→ +∞ it follows ε
u
→ 0, so

dE (p, q) = 0 implies p = q,

which contradicts our hypothesis. �

Proposition 3.5. Let (M, dE) be an E-metric space and (κν)ν∈N is e-convergent

to κ ∈M then E+ is not a normal cone provided that dE (κν ,κ) 9 0E (ν → +∞).
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Proof. Assume that dE (κν ,κ) 9 0E (ν → +∞). Suppose on contrary that E+

is a normal cone with normal constant M. Start with ε > 0 and let e ∈ (E+)
	

with

‖e‖ < ε
M
. Since (κν)ν∈N is an e-convergent sequence in M, so there exists N1 ∈ N

such that

dE (κν ,κ)≪ e, for all ν ≥ N1,

and ∥∥dE (κν ,κ)
∥∥ ≤M ‖e‖ < ε.

This means dE (κν ,κ)→ 0E (ν → +∞) , which is a contradiction to our hypoth-

esis. �

Proposition 3.6. Let (M, dE) be an E-metric space and (κν)ν∈N be an e-Cauchy

sequence in M then E+ is not a normal cone provided that

dE (κν ,κµ) 9 0E as (ν, µ→ +∞) .

Proof. Assume that dE (κν ,κµ) 9 0E (ν, µ→ +∞). Suppose on contrary that

E+ is a normal cone having normal constant M. Start with ε > 0 and let e ∈ (E+)
	

with ‖e‖ < ε
M
. Since (κν)ν∈N is an e-Cauchy sequence inM, so there exists N1 ∈ N

such that

dE (κν ,κµ)≪ e, for all ν, µ ≥ N1,

and ∥∥dE (κν ,κµ)
∥∥ ≤M ‖e‖ < ε.

This means dE (κν ,κµ)→ 0E, which is a contradiction to our hypothesis. �

4. The E-distance space

In this section, we are going to define E-distance space that is the mixed form of

both concepts defined in [3] and [5].

Definition 4.1. [5] Let M be a non-empty set and d :M×M→ R, then d

is a distance on M, if

(1) d (κ, η) ≥ 0 for all κ, η ∈M,

(2) If d (κ, η) + d (η,κ) = 0 then κ = η for all κ, η ∈M.

(3) If κ = η then d (κ, η) = 0, for all κ, η ∈M.

Definition 4.2. [5] LetM be a non-empty set. A function d :M×M→ R is

called s-distance on M if d satisfies the following axioms:

(1) d(κ, η) ≥ 0, for all κ, η ∈M.

(2) d(κ, η) + d(η,κ) = 0 if and only if κ = η, for all κ, η ∈M.

(3) For a positive real number s,

d(κ, η) ≤ s[d(κ, ϑ) + d(ϑ, η)], for all κ, η, ϑ ∈M.



60 RASHID, BIBI, GEORGE, AND MITROVIĆ

Then (M, d) is called a symmetric s-distance space and d is called a symmetric

s-distance on M if d(κ, η) = d(η,κ), for all κ, η ∈M.

Remark 4.1. (1) In s-distance space, d is not necessarily a continuous

function.

(2) Limit of convergent sequence may not be unique in an s-distance space.

Now, we define E-distance space.

Definition 4.3. LetM be a nonempty set and E an ordered space. An ordered

E-distance onM is a function dE :M×M→ E such that for all κ, η ∈M, we have

(1) 0E � dE(κ, η),

(2) dE(κ, η) + dE(η,κ) = 0E if and only if κ = η.

Then the pair (M, dE) is called E-distance space.

Now, we give an example of E-distance space.

Example 4.4. Let M = N, E = R2 with the ordering

(κ1,κ2) ≤ (η1, η2) if and only if κi ≤ ηi for i = 1, 2.

For all µ > ν, we define

dE (µ, ν) = (µ− ν, µ− ν) ,

dE (ν, µ) =
(
ν−1 − µ−1, ν−1 − µ−1

)
.

Since

0E = (0, 0) ≤ (µ− ν, µ− ν) and 0E = (0, 0) ≤
(
ν−1 − µ−1, ν−1 − µ−1

)
,

we have

0E ≤ dE (µ, ν) and also 0E ≤ dE (ν, µ) .

Consider

(0, 0) = dE (µ, ν) + dE (ν, µ)

= (µ− ν, µ− ν) +
(
ν−1 − µ−1, ν−1 − µ−1

)
=

(
µ− ν + ν−1 − µ−1, µ− ν + ν−1 − µ−1

)
,

that is

µ− ν + ν−1 − µ−1 = 0 and µ− ν + ν−1 − µ−1 = 0

which implies µ = ν. Both axioms of E-distance space are satisfied. Hence (M, dE)

is an E-distance space.
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Definition 4.5. Let dE be an E-distance on M and s ≥ 1, then for dE we say

that is the E(s)-distance on M if holds

dE (κ, η) � s
[
dE (κ, ϑ) + dE (ϑ, η)

]
, (1)

for all κ, η, ϑ ∈M.

Now, we give an example of symmetric E(s)-distance space.

Example 4.6. Let M = {1, 2, 3, 4} and E = {(0,κ) : κ ∈ R} be a subspace of

R2. Then E+ = {(0,κ) : κ ≥ 0} . Define dE :M×M→ E by

dE (κ, η) =

{ (
0, 1
|κ−η|

)
κ 6= η

(0, 0) κ = η,

then (M, dE) is symmetric E(s)-distance space with s = 6
5
.

5. The coincidence point results for E(s)-distance space

In this section, we intend to prove the existence of a coincidence point of z and

G, with M being an E(s)-distance space.

Theorem 5.1. Let z and G be two self mappings on a symmetric E(s)-distance

space M with closed positive cone E+ such that (E+)
	 6= ∅, satisfying

dE (zκ,zη) � kdE (Gκ, Gη) + ldE (Gη,zκ) ,

for all κ, η ∈ M, where k and l are non negative reals with k + ls < 1. If range of

z is contained in range of G and G (M) is e-complete subspace of M then z and

G have a coincidence point in M.

Proof. Let κ0 be an arbitrary point in M, since z (M) ⊂ G (M) choose

κ1 ∈ M such that zκ0 = Gκ1. So, we have, for κν ∈ M, we have κν+1 ∈ M such

that

Gκν+1 = zκν .

Now, we obtain

dE (Gκν , Gκν+1) = dE (zκν−1,zκν)
� kdE (Gκν−1, Gκν) + ldE (Gκν ,zκν)
� kdE (Gκν−1, Gκν) + ldE (Gκν , Gκν+1)

...

�
(

k

1− l

)ν
dE (Gκ0, Gκ1) .
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Since l + k < 1, we have k
1−l < 1. Let β = k

1−l , for ν > µ, we have

dE (Gκµ, Gκν) � s
[
dE (Gκµ, Gκµ+1) + dE (Gκµ+1, Gκν)

]
� sdE (Gκµ, Gκµ+1) + s2dE (Gκµ+1, Gκµ+2) + · · ·

+sν−µdE (Gκν−1, Gκν)
�

[
sβµ + s2βµ+1 + · · ·+ sν−µβν−1

]
dE (Gκ0, Gκ1)

� sβµ
1− (sβ)ν−µ

1− sβ
dE (Gκ0, Gκ1) .

Given e≫ 0E, choose ρ > 0 such that e− ρU+ ⊆ E+ and k1 ∈ N such that

sβµ
1− (sβ)ν−µ

1− sβ
dE (Gκ0, Gκ1) ∈

ρ

2
U+,

for any µ, ν ≥ k1, thus we have,

e− sβµ1− (sβ)ν−µ

1− sβ
dE (Gκ0, Gκ1)−

ρ

2
U+ ⊆ e− ρU+ ⊆ E+,

therefore

dE (Gκν , Gκµ) � sβµ
1− (sβ)ν−µ

1− sβ
dE (Gκ0, Gκ1)≪ e,

for all ν, µ ≥ k1, which implies the sequence (Gκν)ν∈N is e-Cauchy. Because GM
is e-complete so there will some κ ∈ M such that Gκν

e→ Gκ. Now for e≫ 0E,

choose k2, such that dE (Gκ, Gκν)≪ e
k+1

for all ν ≥ k2. Consider for all ν ≥ k2,

dE (Gκν ,zκ) = dE (zκν−1,zκ)

� kdE (Gκν−1, Gκ) + ldE (Gκ,zκν−1)
� kdE (Gκν−1, Gκ) + ldE (Gκ, Gκν)

≪ k
e

k + l
+ l

e

k + l
≪ e.

Which implies limν→∞Gκν = zκ. Now, we have

dE (Gκ,zκ) � s
[
dE (Gκ, Gκν) + dE (Gκν ,zκ)

]
� s

[
dE (Gκ, Gκν) + dE (zκν−1,zκ)

]
� s

[
dE (Gκ, Gκν) + kdE (Gκν−1, Gκ) + ldE (zκν−1, Gκ)

]
� s

[
(1 + l) dE (Gκ, Gκν) + kdE (Gκν−1, Gκ)

]
≪ e,

for all ν ≥ k2. Since dE (Gκ,zκ) ≪ e
µ
for any µ ≥ 1, for any e

µ
≫ 0E,

e
µ
−

dE (Gκ,zκ) ∈ E+ for all µ ∈ N which implies−dE (Gκ,zκ) ∈ E+ but dE (Gκ,zκ) ∈
E+, thus we have dE (Gκ,zκ) = 0E. Hence κ is coincidence point of G and z. �
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Corollary 5.2. Let z and G be two self mappings on a symmetric E(s)-distance

space M with closed positive cone E+ and (E+)
	 6= ∅, such that

dE (zκ,zη) � p
[
dE (Gκ, Gη) + dE (Gη,zκ)

]
for all κ, η ∈ M, where p ∈

[
0, 1

1+s

)
. If range of z is contained in range of G and

G (M) is e-complete subspace of M, then z and G have at least a coincidence point

in M.

In 1998, Jungck and Rhoades [12] introduced the notion of weakly compatible

maps. The compatible maps (see [11]) are weakly compatible but converse need not

be true (see also [6]).

Definition 5.1. [12] A pair of maps z and G is called weakly compatible pair

if they commute at coincidence points.

Using the concept of weakly compatible maps and Theorem 5.1 we get the fol-

lowing result.

Theorem 5.3. Let z and G be two self mappings on a symmetric E(s)-distance

space M with closed positive cone E+ such that (E+)
	 6= ∅, satisfying

dE (zκ,zη) � kdE (Gκ, Gη) + ldE (Gκ,zκ)

for all κ, η ∈M, where k, l ≥ 0 with k+ ls < 1. If range of z is contained in range

of G and G (M) is e-complete subspace of M. Then z and G have a coincidence

point in M. Moreover, if z and G are weakly compatible, then z and G have a

unique common fixed point in M.

Proof. Take κ0, an arbitrary point of M, since z (M) ⊂ G (M) choose κ1 ∈
M such that zκ0 = Gκ1. Continuing in this way, for κν ∈M, we have κν+1 ∈M
such that

Gκν+1 = zκν .

Consider

dE (Gκν , Gκν+1) = dE (zκν−1,zκν)
� kdE (Gκν−1, Gκν) + ldE (Gκν−1,zκν−1)
� kdE (Gκν−1, Gκν) + ldE (Gκν−1, Gκν)
� (k + l) dE (Gκν−1, Gκν)

...

� (k + l)ν dE (Gκ0, Gκ1) .

In similar manner as of the above Theorem, we have at least a point of coincidence

of G and z, say ω = Gp = zp, p ∈ M. Now for uniqueness assume there exists
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q ∈M such that zq = Gq, then

dE (Gp,Gq) = dE (zp,zq)
� kdE (Gp,Gq) + ldE (Gp,zp)
� kdE (Gp,Gq) + ldE (Gp,Gp) .

Thus we have,

(1− k) dE (Gp,Gq) � 0.

So, −dE (Gp,Gq) ∈ E+, since dE (Gp,Gq) ∈ E+ we conclude,

dE (Gp,Gq) = 0.

So, ω is a unique point of coincidence of G and z. Since G and z are weakly

compatible self mappings, ω is a unique common fixed point of G and z. �

Corollary 5.4. Let z and G two self mappings on a symmetric E(s)-distance

space M with closed positive cone E+ so that (E+)
	 6= ∅ satisfying

dE (zκ,zη) � b
[
dE (Gκ, Gη) + dE (Gκ,zκ)

]
,

for all κ, η ∈ M, where b ∈
[
0, 1

1+s

)
. If range of z is contained in range of G and

G (M) is e-complete subspace of M. Then z and G has at least a coincidence point

in M. Moreover, if z and G are weakly compatible, then z and G have a unique

common fixed point in M. In either case, for any κ0 ∈ M, {Gκν} converges to

unique common fixed point of G and z.

Remark 5.5. Note that Theorem 5.1 represents a generalization of Banach’s

fixed point theorem and also generalizes some results of Jungck (see [10, 11]).

Remark 5.6. All the above fixed point results remains valid if we consider E(s)-

distance space instead of symmetric E(s)-distance space. However for that case pos-

itive cone should be normal one.

6. The rational type contraction in E(s)-distance space

In this section, we intend to prove existence of fixed point result in an E(s)-

distance space in the presence of rational type contractive condition by using com-

parison function ψ.

Theorem 6.1. Let (M, dE) be a e-complete symmetric E(s)-distance space with

closed cone E+ such that (E+)
	 6= ∅ and a self mapping z on M satisfying

dE (zκ,zη) � λdE (κ, η) +
µ [1 + ψ (dE(κ,zκ))] dE(η,zη)

1 + ψ (dE(κ, η))
, (2)

for all κ, η ∈ M, where λ and µ are non negative reals with λ + sµ < 1 a and

ψ : E+ → R is continuous, ψ (0E) = 0. Then z has a fixed point in M provided that

positive cone is normal.
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Proof. Let κ0 be an arbitrary point in M, consider the iterative sequence

κ1 = zκ0,κ2 = zκ1, . . . ,κν+1 = zκν ,

then

dE (κν ,κν+1) = dE (zκν−1,zκν)

� λdE (κν−1,κν) +
µ [1 + ψ (dE (κν−1,zκν−1))] dE (κν ,zκν)

1 + ψ (dE (κν−1,κν))

= λdE (κν−1,κν) +
µ [1 + ψ (dE (κν−1,κν))] dE (κν ,κν+1)

1 + ψ (dE (κν−1,κν))
= λdE (κν−1,κν) + µdE (κν ,κν+1)

� λ

1− µ
dE (κν−1,κν) .

Now, with γ = λ
1−µ < 1, we have

dE (κν ,κν+1) � γdE (κν−1,κν) � . . . � γνdE (κ0,κ1) .

So, for any ν > µ, we have

dE (κµ,κν) � s
[
dE (κµ,κµ+1) + dE (κµ+1,κν)

]
� sdE (κµ,κµ+1) + s2dE (κµ+1,κµ+2) + · · ·+ sν−µdE (κν−1,κν)
�

[
sγµ + s2γµ+1 + · · ·+ sν−µγν−1

]
dE (κ0,κ1)

� sγµ
[
1 + sγ + s2γ2 + · · ·+ (sγ)ν−µ−1

]
dE (κ0,κ1)

� sγµ
1− (sγ)ν−µ

1− sγ
dE (κ0,κ1) .

For e≫ 0E, choose ρ > 0 so that e− ρU+ ⊆ E+ and k1 ∈ N such that

sγµ
1− (sγ)ν−µ

1− sγ
dE (κ0,κ1) ∈

ρ

2
U+

for any µ, ν ≥ k1, thus e− sγµ 1−(sγ)ν−µ

1−sγ dE (κ0,κ1)− ρ
2
U+ ⊆ e− ρU+ ⊆ E+, therefore

dE (κµ,κν) � sγµ
1− (sγ)ν−µ

1− sγ
dE (κ0,κ1)≪ e for all ν, µ ≥ k1.

Which implies (κν)ν∈N is a e-Cauchy sequence, since M is e-complete so there

exists some κ ∈ M such that κν
e→ κ. For a given e≫ 0E, choose a natural k2,

such that dE (κ,κν) ≪ e(1−µ)
2s

, sdE (κν ,κν+1) ≪
e(1−µ)

2s
for all ν ≥ k2. Fixed point

of this mapping z exists when we have a normal cone. Because in that case if the
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sequence (κν)ν∈N is e-converges to κ then limν→∞ dE (κ,κν) = 0. Consider

dE (κ,zκ) � s
[
dE (κ,κν) + dE (κν ,zκ)

]
� s

[
dE (κ,κν) + dE (zκν−1,zκ)

]
� s

[
dE (κ,κν) + λdE (κν−1,κ) +

µ [1 + ψ (dE (κν−1,zκν−1))] dE (κ,zκ)

1 + ψ (dE (κν−1,κ))

]
� s

[
dE (κ,κν) + λdE (κν−1,κ) +

µ [1 + ψ (dE (κν−1,κν))] dE (κ,zκ)

1 + ψ (dE (κν−1,κ))

]
� s

[
dE (κ,κν) + λdE (κν−1,κ) +

µ [1 + ψ (dE (κν−1,κν))] dE (κ,zκ)

1 + ψ (dE (κν−1,κ))

]
,

� sµdE (κ,zκ) .

So, κ is a fixed point of z. �

Remark 6.2. Note that Theorem 6.1 generalized in several directions Theorem

1 in [7].

7. Conclusion

In this article we define E(s)-distance space and generalize the results of [Mehmood,

N. et al, Positivity, (2019). 1-11.] in the settings of E(s)-distance space with non-

solid and non-normal cones. Also, some coincidence point results have been obtained

that extend and generalize some known results in the literature. We also expect ap-

plications of these spaces in fixed point theoru, approximation theory, variational

problems, optimization theory and so on.
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