- Robinson T., McMullan G., Marchant R., Nigam P., (2001), Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77: 247-255.
- Hammami S., Bellakhal N., Oturan N., Oturan M. A., Dachraoui M., (2008), Degradation of Acid Orange 7 by electrochemically generated OH radicals in acidic aqueous medium using a boron-doped diamond or platinum anode: A mechanistic study. Chemosphere. 73: 678-684.
- Melgoza D., Hernandez-Ramirez A., Peralta-Hernandez J. M., (2009), Comparative efficiencies of the decolourisation of Methylene Blue using Fenton’s and photo-Fenton's reactions. Photochem. Photobiol. Sci. 8: 596-599.
- Pare B., Jonnalagadda S. B., Tomar H., Singh P., Bhagwat V. W., (2008), ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation. Desalination. 232: 80-90.
- Yassıtepe E., Yatmaz H. C., Öztürk C., Öztürk K., Duran C., (2008), Photocatalytic efficiency of ZnO plates in degradation of azo dye solutions. J. Photochem. Photobiol. 198: 1-6.
- Kong J. Z., Li A. D., Li X. Y., Zhai H. F., Zhang W. Q., Gong Y. P., Wu D., (2010), Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle. J. Solid State Chem.183: 1359-1364.
- Cozzoli P. D., Kornowski A., Weller H., (2003), Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J. Am. Chem. Soc.125: 14539-14548.
- Jun Y. W., Jung Y. Y., Cheon J., (2002), Architectural control of magnetic semiconductor nanocrystals. J. Am. Chem. Soc.124: 615-619.
- Rao, A. R., Dutta, V., (2007), Low-temperature synthesis of TiO2 nanoparticles and preparation of TiO2 thin films by spray deposition. Sol. Energy Mater Sol. Cells. 91: 1075-1080.
- Xue X. D., Fu J. F., Zhu W. F., Guo X. C., (2008), Separation of ultrafine TiO2 from aqueous suspension and its reuse using cross-flow ultrafiltration (CFU). Desalination. 225: 29-40.
- Fatimah I., Said A., Hasanah U. A., (2015), Preparation of TiO2-SiO2 using rice husk ash as silica source and the kinetics study as photocatalyst in methyl violet decolorization. Bull. Chem. React. Eng. Catal. 10: 43-49.
- Liu G., Niu P., Yin L., Cheng H. M., (2012), α-Sulfur crystals as a visible-light-active photocatalyst. J. Am. Chem. Soc.134: 9070-9073.
- Liu G., Niu P., Cheng H. M., (2013), Visible‐light‐active elemental photocatalysts.Chem. Phys. Chem. 14: 885-892.
- Arzehgar Z., Hosna A., (2019), A convenient one‐pot method for the synthesis of symmetrical dialkyl trithiocarbonates using NH4OAc under mild neutral conditions. J. Chin. Chem. Soc. 66: 303-306.
- Soleiman-Beigi M., Arzehgar Z., (2013), A review study on chemical properties and food indexes of mastic Oil compared with Olive, sunflower and canola oils. The Ilamian traditional uses of mastic. J. Ilam Uni. Med. Sci. 21: 1-13.
- Sadegh-Malvajerd S., Arzehgar Z., Nikpour F., (2013), Regio-and Chemoselective Synthesis of 5-Aroyl-NH-1, 3-oxazolidine-2-thiones. Z. Naturforsch B. J. Chem. Sci. 68: 182-186.
- Yew S. P., Tang H. Y., Sudesh K., (2006), Photocatalytic activity and biodegradation of polyhydroxybutyrate films containing titanium dioxide. Polym. Degrad. Stab. 91: 1800-1807.
- Bhalkar B. N., Bedekar P. A., Patil S. M., Patil S. A., Govindwar S. P., (2015), Production of camptothecine using whey by an endophytic fungus: standardization using response surface methodology. RSC advances. 5: 62828-62835.
- Ansari S. A., Cho M. H., (2017), Growth of three-dimensional flower-like SnS2 on gC3N4 sheets as an efficient visible-light photocatalyst, photoelectrode, and electrochemical supercapacitance material. Sustain. Energy Fuels. 1: 510-519.
- Khan M. M., Ansari S. A., Pradhan D., Ansari M. O., Lee J., Cho M. H., (2014), Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A.2: 637-644.
- Ansari S. A., Khan M. M., Ansari M. O., Cho M. H., (2016), Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J. Chem. 40: 3000-3009.
- Ansari S. A., Khan M. M., Ansari M. O., Cho M. H., (2015), Gold nanoparticles-sensitized wide and narrow band gap TiO2 for visible light applications: A comparative study. New J. Chem. 39: 4708-4715.
- Li W. J., Chou S. L., Wang J. Z., Liu H. K., Dou S. X., (2013), Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett.13: 5480-5484.
- Kang Q., Cao J., Zhang Y., Liu L., Xu H., Ye J., (2013), Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. J. Mater. Chem. A. 1: 5766-5774.
- Wang S., Zhao L., Bai L., Yan J., Jiang Q., Lian J., (2014), Enhancing photocatalytic activity of disorder-engineered C/TiO2 and TiO2 nanoparticles. J. Mater. Chem. A. 2: 7439-7445.
- Khanmohammadi Khorrami M. R., Shokri Aghbolagh Z., (2020), Synthesis and non‐parametric evaluation studies on high performance of catalytic oxidation‐extraction desulfurization of gasoline using the novel TBAPW11Zn@TiO2@PAni nanocomposite. Appl. Organomet. Chem.34: e5299.
- Pearse I. S., Heath K. D., Cheeseman J. M., (2005), Biochemical and ecological characterization of two peroxidase isoenzymes from the mangrove, Rhizophora mangle. Plant Cell Environ. 28: 612-622.
- Aghbolagh Z. S., Khorrami M. R. K., Rahmatyan M. S., (2020), Fabrication of (C4H9)4NPZnW11‐TiO2/PANI as an efficient nanocatalyst for dye degradation.Chem. Select. 5: 9424-9430.
- Zhang H., Lv X., Li Y., Wang Y., Li J., (2010), P25-graphene composite as a high performance photocatalyst. ACS Nano. 4: 380-386.
- Choi H., Al-Abed S. R., Dionysiou D. D., Stathatos E., Lianos P., (2010), TiO2-based advanced oxidation nanotechnologies for water purification and reuse. Sustain Sci. Eng.2: 229-254.
- Herrmann J. M., Duchamp C., Karkmaz M., Hoai B. T., Lachheb H., Puzenat E., Guillard C., (2007), Environmental green chemistry as defined by photocatalysis. J. Hazard. Mater. 146: 624-629.
|