تعداد نشریات | 418 |
تعداد شمارهها | 10,002 |
تعداد مقالات | 83,585 |
تعداد مشاهده مقاله | 78,086,462 |
تعداد دریافت فایل اصل مقاله | 55,032,409 |
طراحی یک مبدل بسیار افزاینده DC-DC مبتنی بر شبکه شبه امپدانس با تنش ولتاژ کم، با به کارگیری تکنیک سلف کوپل شده | ||
روشهای هوشمند در صنعت برق | ||
مقاله 1، دوره 14، شماره 55، آذر 1402، صفحه 1-12 اصل مقاله (786.33 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
حسین جعفری1؛ مهدی شانه* 2؛ توحید نوری3 | ||
1دانشکده مهندسی برق- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران | ||
2مرکز تحقیقات ریز شبکه های هوشمند- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران | ||
3گروه مهندسی برق- واحد ساری، دانشگاه ازاد اسلامی، ساری، ایران | ||
چکیده | ||
ساختارهای بسیار افزاینده عموماً برای ارتقاء سطح ولتاژ پایین تولید شده توسط منابع انرژی تجدید پذیر به کار گرفته میشوند. در این مقاله یک ساختار بسیار افزاینده مبتنی بر شبکه شبه امپدانس ارائه شده است، که دارای ساختاری ساده و در عین حال کاربردی متشکل از دو سلف و خازن میباشد. با توجه به ضریب وظیفه در محدوده ۵۰ درصد برای این مبدل مشکلات بازیابی معکوس دیودها و پایدارسازی مبدل برطرف میگردد. از طرفی زمین مشترک کلید قدرت و منبع ورودی باعث سادگی مدار کنترل میشود. با بهره گیری از تکنیک سلف کوپل شده و همچنین سلول چند برابر کننده ولتاژ، بهره ولتاژ مبدل به مقدار چشمگیری افزایش می یابد. علاوه بر آن در جهت محدود کردن تنش ولتاژ روی کلید، از خازن استک شده استفاده شده است. استفاده از ساختار پیشنهادی باعث افزایش بهره ولتاژ مبدل میگردد. همچنین ساختار ارائه شده سطح تنش ولتاژ روی نیمه هادیهای مدار را کاهش میدهد که باعث کاهش هزینه و افزایش راندمان مدار میگردد. مبدل طراحی شده با ولتاژ ورودی 25 ولت و ولتاژ خروجی400 ولت و توان 100 وات در نرم افزار اسپایس شبیه سازی شده و نتایج در مقاله آمده است. | ||
تازه های تحقیق | ||
- یک مبدل بسیار افزاینده مبتنی بر شبکه شبه امپدانس همراه با تکنیک سلف کوپل شده ارائه شده است. - استرس ولتاژ کلید کاهش یافته است و در صورت استفاده از کلید با مقاومت هدایت کم، تلفات کلید زنی کاهش خواهد یافت. - مدار دارای یک کلید میباشد که دارای زمین مشترک با منبع ورودی است و از پیچیدگی مدار کنترل جلوگیری شده است. - با ادغام تکنیک سلف کوپل شده و ساختار شبه امپدانس و سلول چند برابر کننده ولتاژ بهره مبدل به شدت افزایش یافته است. | ||
کلیدواژهها | ||
خازن استک شده؛ سلول افزاینده ولتاژ؛ سلف کوپل شده؛ شبکه شبه امپدانس | ||
مراجع | ||
[1] F.Z. Peng, "Z-source inverter", IEEE Trans. Power Electronic, vol. 39, no. 2, pp. 504-510, Mar./Apr. 2003 (doi: 10.1109/TIA.2003.808920). [2] M. Soltani, S. Mirtalaee, "Design and simulation of a high step-up three level boost converter with coupled-inductor and passive clamp", Journal of Intelligent Procedures in Electrical Technology, vol. 8, no. 32, pp. 3-12, March 2017 (dor: 20.1001.1.23223871.1396.8.32.1.1) (in Persian). [3] D. Taheri, G. Shahgholian, M.M. Mirtalaei, "Simulation of combined boost converter behavior with positive output voltage and investigation of voltage ripple at output", vol. 9, no. 3, pp. 1-8, autumn 2020 (in Persian). [4] E.H. Ismail, M.A. Al-Saffar, A.J. Sabzali, "High conversion ratio dc–dc converters with reduced switch stress", IEEE Trans. on Power Electronics, vol. 55, no. 7, pp. 2139-2151, Aug. 2008 (doi: 10.1109/TCSI.2008.918195). [5] Y. Zheng, K.M. Smedley, "Analysis and design of a single-switch high step-up coupled inductor boost converter", IEEE Trans. on Power Electronics, vol. 35, no. 1, pp. 535-545, Jan. 2019 (doi: 10.1109/TPEL.2019.2915348). [6] M. Das, V. Agarwal, "Design and analysis of a high-efficiency dc–dc converter with soft switching capability for renewable energy applications requiring high voltage gain", IEEE Trans. on Power Electronics, vol. 63, no. 5, pp. 2936-2944, 2016 (doi: 10.1109/TIE.2016.2515565). [7] O. Sharifiyana, M. Dehghani, G. Shahgholian, S. M. M. Mirtalaei, M. Jabbari, "An overview of the structure and improvement of the main parameters of non-isolated dc/dc boost converters", Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 48, pp. 1-29, March 2022 (dor: 20.1001.1.23223871.1400.12.48.6.6) (in Persian). [8] A.A.A. Hafez, “Multi-level cascaded dc/dc converters for PV applications”, Alexandria Engineering Journal, vol. 54, no. 4, pp. 1135-1146, Dec. 2015 (doi: 10.1016/j.aej.2015.09.004). [9] B. Gu, J. Dominic, J.S. Lai, Z. Zhao, C. Liu, "High boost ratio hybrid transformer dc–dc converter for photovoltaic module applications", IEEE Trans. on Power Electronics, vol. 28, no. 4, pp. 2048-2058, May. 2013 (doi: 10.1109/TIE.2016.2515565) [10] J.H. Lee, T.J. Liang, J.F. Chen, "Isolated coupled-inductor-integrated dc–dc converter with nondissipative snubber for solar energy applications”, IEEE Trans. on Industrial Electronics, vol. 61, no. 7, pp. 3337-3348, July 2014 (doi: 10.1109/TIE.2013.2278517). [11] Y.P. Siwakoti, F.Z. Peng, F. Blaabjerg, P. C. Loh and G.E. Town, "Impedance-source networks for electric power conversion part I: A topological review", IEEE Trans. on Power Electronics, vol. 30, no. 2, pp. 699-716, Feb. 2015 (doi: 10.1109/TPEL.2014.2313746). [12] B. Axelrod, Y. Berkovich, A. Ioinovici, "Switched-capacitor/switched-inductor structures for getting transformerless hybrid dc–dc PWM converters", IEEE Trans. on Circuits and Systems, vol. 55, no. 2, pp. 687-696, March 2008 (doi: 10.1109/TCSI.2008.916403). [13] T. Nouri, M. Shaneh, A. Ghorbani, "Interleaved high step-up ZVS dc–dc converter with coupled inductor and built-in transformer for renewable energy systems applications", IET Power Electronics, vol. 13, no. 16, pp. 3537-3548, Dec. 2020 (doi: 10.1049/iet-pel.2020.0162). [14] T. Nouri, M. Shaneh, "New interleaved high step-up converter based on a voltage multiplier cell mixed with magnetic devices", IET Power Electronics, vol. 13, no. 17, pp. 4089-4097, Dec. 2021 (doi: 10.1049/iet-pel.2020.0591). [15] Z. Peiravan, M. Delshad, M.R. Amini, "A new soft switching interleaved flyback converter with parallel coupled inductors and recovery leakage inductance energy", Journal of Intelligent Procedures in Electrical Technology, vol. 13, no. 50, pp. 31-47, September 2022 (dor: 20.1001.1.23223871.1401.13.50.2.3) (in Persian). [16] J. Zhang, J. Ge, "Analysis of Z-source dc-dc converter in discontinuous current mode", Proceeding of the IEEE/APPEEC, Chengdu, China, March 2010 (doi: 10.1109/APPEEC.2010.5448927). [17] M. Zhu, K. Yu, F.L. Luo, "Switched inductor Z-source inverter", IEEE Trans. on Industrial Electronics, vol. 25, no. 8, pp. 2150-2158, Aug. 2010 (doi: 10.1109/TPEL.2010.2046676). [18] A. Raveendran, E. Paul, A.P. Ommen, "Quasi-Z-source dc-dc converter with switched capacitor", International Journal of Engineering Research and General Science, vol. 3, no. 4, pp. 1132-1137, July/Aug. 2015. [19] G. Zhang, Z. Wang, S.S. Yu, S.Z. Chen, B. Zhang, H.H. Iu, Y. Zhang, "A generalized additional voltage pumping solution (GAVPS) for high-step-up converters", IEEE Trans. on Power Electronics, vol. 34, no. 7, pp. 6456-6467, 2019 (doi: 10.1109/TPEL.2018.2874006). [20] S.M. Chen, T.J. Liang, L.S. Yang, J.F. Chen, "A cascaded high step-up dc–dc converter with single switch for microsource applications", IEEE Trans. on Power Electronics, vol. 26, no. 4, pp. 1146 - 1153, April 2011 (doi: 10.1109/TPEL.2010.2090362). | ||
آمار تعداد مشاهده مقاله: 989 تعداد دریافت فایل اصل مقاله: 460 |