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Perturbed second-order state-dependent

Moreau’s sweeping process

Doria Affane and Mustapha Fateh Yarou∗

Abstract. In this paper, using a discretization approach, the existence of solu-

tions for a class of second-order differential inclusions is stated in finite dimensional

setting. The right hand side of the problem is governed by the so-called noncon-

vex state-dependent sweeping process and contains a general perturbation with

unbounded values.

1. Introduction

The sweeping process is a very useful and wonderful model in plasticity and

friction dynamics. Introduced by J. J. Moreau, see for instance [27], and motivated

by its applications in unilateral mechanics for modeling the quasi-static evolution

of elastoplastic systems, the sweeping process has found applications in nonsmooth

mechanics, mathematical economics and planning procedures, electrical circuits,

crowd motion modeling and other fields, see the recent paper [31] and the references

therein. The problem lies in finding a trajectory u(t) ∈ K(t), t ∈ [T0, T ] satisfying

the following Cauchy problem{
−u̇(t) ∈ NK(t)(u(t)), a.e. t ∈ [T0, T ];

u(t) ∈ K(t), ∀t ∈ [T0, T ],

where NK(t)(u(t)) is the (outward) normal cone to the moving convex and closed set

K(t) at the point u(t). Let recall the geometrical-mechanical interpretation of the

sweeping process from [27]: as long as the point u(t) happens to be in the interior of

K(t), the normal cone NK(t)(u(t)) is reduced to zero, so u(t) does not move. When
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the point is caught up by the boundary of K(t), it moves, subject to an inward

normal direction, as if it is swept by the moving set K(t).

This problem has been the subject of various extensions in several directions,

including generalizations to the non-convex case, the perturbed problem, the state-

dependent case, as well as the second-order problem, see for instance [2, 3, 4, 5,

9, 11, 12, 13, 15, 21, 32]. Recently, the second-order perturbed state-dependent

non-convex sweeping process has been a particular attraction for many authors, it

takes the following form: let H be a Hilbert space, T0 and T be two non-negative

real numbers with 0 ≤ T0 < T, and let for each t ∈ [T0, T ] and x ∈ H, a nonempty

closed subset K(t, x) of H. Given b ∈ H and a ∈ K(T0, b), we have to find two

absolutely continuous mappings u, v : [T0, T ] → H with u(t) ∈ K(t, v(t)) for all

t ∈ [T0, T ] satisfying

(PF )


−u̇(t) ∈ NK(t,v(t))(u(t)) + F (t, v(t), u(t)), a.e. t ∈ [T0, T ];

v(t) = b+

∫ t

T0

u(s)ds, u(t) = a+

∫ t

T0

u̇(s)ds, ∀t ∈ [T0, T ];

u(t) ∈ K(t, v(t)), ∀t ∈ [T0, T ],

where NK(t,v(t))(u(t)) denotes the normal cone to K(t, v(t)) at the point u(t), F :

[T0, T ] × H × H ⇁ H is a single or set-valued mapping. The differential inclu-

sion (PF ) was studied for the first time when the sets K(t, v(t)) are convex and

compact and F ≡ 0 by C. Castaing [14], then by K. Chraibi [18] and Kunze and

Monteiro-Marques [25]. The non-convex case has been considered by Chemetov and

Monteiro-Marques [17], they proved the existence of solutions to (PF ) for uniformly

prox-regular sets K(t, v(t))) with absolutely continuous variation in space, Lipschitz

variation in time and with a single-valued perturbation. By means of a general-

ized version of the Shauder theorem, Castaing, Ibrahim and Yarou [16] provided an

other approach to prove the existence for uniformly prox regular and ball-compact

sets K(t, v(t)) with absolutely continuous variation in time, without perturbation

and for the perturbed problem (even in presence of a delay). The existence of so-

lution for such problem is established by proving the convergence of the Moreau’s

catching-up algorithm. Later, other approaches were used: one consists, in the fi-

nite dimensional setting, in reducing the constrained differential inclusion (PF ) to

an unconstrained one governed by the subdifferential of the distance function, see

[22]; the second consists in approaching the problem by a regularized one depending

on a positif parameter converging to zero, even for a general class of sets, namely

equi-uniformly subsmooth sets and positively α-far sets, see [7, 8, 23]. For recent

other results, we refer to [1, 6, 30, 33].

A classic approach to solving second order problems consists of first order reduc-

tion and use of known results. Generally, this is made possible thanks to the use of

fixed point theory. This was obtained in a recent paper [24] with strong conditions:

the sets K(t, x) are contained in a strong compact, moreover only the particular
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case of a single-valued perturbation satisfying the linear growth condition has been

considered. Very recently, [28] and [34] have presented a new approach for solving

second-order sweeping process with set-valued perturbation in the finite dimensional

setting: it consists in a reduction of the problem to a first order perturbed sweeping

process and a use of the known results in this case without use of fixed point theory

nor any compactness condition.

Our main purpose in this paper is to study, in the finite dimensional setting, the

second-order sweeping process with two perturbations (F = G+ g)

(P)


−u̇(t) ∈ NK(t,v(t))(u(t)) +G(t, v(t), u(t)) + g(t, v(t), u(t)) a.e t ∈ [T0, T ]

v(t) = b+

∫ t

T0

u(s)ds, u(t) = a+

∫ t

T0

u̇(s)ds, ∀t ∈ [T0, T ],

u(t) ∈ K(t, v(t)), ∀t ∈ [T0, T ],

where G : [T0, T ] × H × H ⇁ H is an upper semicontinuous set-valued map with

nonempty closed convex values unnecessarily bounded and without any compactness

condition and g : [T0, T ] × H × H → H is a single-valued mapping satisfying the

linear growth condition. Our aim in this paper is twofold: using the recent result

of [28] and taking a perturbation as a sum of two mappings with single and set-

values respectively, we generalize all the results obtained in the two cases. Using

a different approach, we weaken the hypotheses on the perturbation by taking a

Carathéodory mapping satisfying a linear growth condition and an unbounded set-

valued perturbation for which only the element of minimum norm satisfies a linear

growth condition.

The paper is organized as follows. In Section 2, we recall some basic notation,

definitions and useful results which are used throughout the paper. In Section 3, we

state the existence results.

2. Notation and Preliminaries

Let H be a real Hilbert space whose inner product is denoted by ⟨·, ·⟩, and the

associated norm by ∥ ·∥.We denote by BH the unit closed ball of H, L1
H([T0, T ]) the

space of all Lebesgue-Bochner integrable H-valued mappings defined on [T0, T ], by

CH([T0, T ]) the Banach space of all continuous mappings u : [T0, T ] → H endowed

with the norm of uniform convergence and AC([T0, T ]) the space of absolutely con-

tinuous mapping.

For any nonempty subsets S, S ′ of H, we denote by:

• d(·, S) the usual distance function associated with S, and δ∗(x′;S) = sup
y∈S

⟨x′, y⟩

the support function of S at x′ ∈ H. If S is closed convex, we have

d(x, S) = sup
x′∈BH

[⟨x′, x⟩ − δ∗(x′;S)].
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• ProjS(u) the projection of u onto S, defined by

ProjS(u) = {y ∈ S : d(u, S) = ∥u− y∥},

it is unique whenever S is closed convex.

• H the Hausdorff distance between S and S ′, defined by

H(S, S ′) = max{sup
u∈S

d(u, S ′), sup
v∈S′

d(v, S)}.

• co(S) the convex hull of S and co(S) its closed convex hull, characterized by

co(S) = {x ∈ H : ∀x′ ∈ H, ⟨x′, x⟩ ≤ δ∗(x′;S)}.

We need in the sequel to recall some definitions and results that will be used

throughout the paper. Let A be an open subset of H and φ : A→ (−∞,+∞] be a

lower semicontinuous function, the proximal subdifferential ∂Pφ(x), of φ at x (see

[20]) is the set of all proximal subgradients of φ at x. Any ξ ∈ H is a proximal

subgradient of φ at x if there exist positive numbers η and ς such that

φ(y)− φ(x) + η∥y − x∥2 ≥ ⟨ξ, y − x⟩, ∀y ∈ x+ ςBH .

Let x be a point of S ⊂ H, we recall (see [20]) that the proximal normal cone to S

at x is defined by NP (S, x) = ∂PΨS(x), where ΨS denotes the indicator function of

S, i.e. ΨS(x) = 0 if x ∈ S and +∞ otherwise. Note that the proximal normal cone

is also given by

NP
S (x) = {ξ ∈ H : ∃ϱ > 0 s.t x ∈ ProjS(x+ ϱξ)}.

If φ is a real-valued locally-Lipschitz function defined onH, the Clarke subdifferential

∂Cφ(x) of φ at x is the nonempty convex compact subset of H given by

∂Cφ(x) = {ξ ∈ H : φ◦(x; v) ≥ ⟨ξ, v⟩,∀v ∈ H},

where

φ◦(x; v) = lim
y→x,

sup
t↓0

φ(y + tv)− φ(y)

t

is the generalized directional derivative of φ at x in the direction v (see [20]). The

Clarke normal cone NC(S, x) to S at x ∈ S is defined by polarity with TC
S , that is,

NC
S (x) = {ξ ∈ H : ⟨ξ, v⟩ ≤ 0, ∀v ∈ TC

S },

where TC
S denotes the Clarke tangent cone and is given by

TC
S = {v ∈ H : d◦(x, S; v) = 0}.
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Recall now, that for a given ρ ∈]0,+∞] the subset S is uniformly ρ-prox regular (see

[29]) or equivalently ρ-proximally if every nonzero proximal to S can be realized by

a ρ-ball, this means that for all x ∈ S and all 0 ̸= ξ ∈ NP
S (x), one has

⟨ ξ

∥ξ∥
, x− x⟩ ≤ 1

2ρ
∥x− x∥2,

for all x ∈ S. We make the convention 1
ρ
= 0 for ρ = +∞. Recall that for ρ = +∞

the uniform ρ-prox regularity of S is equivalent to the convexity of S. It’s well

known that the class of uniformly ρ-prox regular sets is sufficiently large to include

the class of convex sets, p-convex sets, C1,1 submanifolds (possibly with boundary)

of a Hilbert space and many other non-convex sets (see [19, 29]).

The following proposition summarizes some important properties of the uniform

prox-regularity needed in the sequel. For the proof of these results we refer the

reader to [12] and [29].

Proposition 2.1. Let S be a nonempty closed subset of H and x ∈ S. The

following assertions hold:

1) ∂Pd(x, S) = NP
S (x) ∩BH ;

2) if S is uniformly ρ-prox-regular with ρ ∈]0,+∞], then

i) the proximal subdifferential of d(·, S) coincides with its Clarke subdifferential

at all points x ∈ H satisfying d(x, S) < ρ. So, ∂d(x, S) = ∂Pd(x, S) = ∂Cd(x, S) is

closed convex;

ii) the proximal normal cone to S coincides with all normal cones contained in

the Clarke normal cone at all points x ∈ S, i.e., NS(x) = NP
S (x) = NC

S (x);

iii) let K : [T0, T ]×H ⇁ H be a uniformly ρ-prox regular closed valued mapping

satisfying∣∣d(x1, K(t, y1)
)
− d
(
x2, K(s, y2)

)∣∣ ≤ ∥x1 − x2∥+ ζ(t)− ζ(s) + L∥y1 − y2∥;

for all s ≤ t in [T0, T ] and xi, yi in H (i = 1, 2), where ζ : [T0, T ] → R+ is a

nondecreasing absolutely continuous function and L is a positive constant. Then the

convex weakly compact valued mapping (t, x, y) → ∂pd(y,K(t, x)) satisfies the upper

semicontinuity property.

3. Main result

Let H = Rn the finite dimensional Euclidean space. The following assumptions

will be useful.

Assumption 1. LetK : [T0, T ]×Rn ⇁ Rn be a set-valued mapping with nonempty

closed values, such that:

(K1) there is a positive constant 0 < L < 1 and a nondecreasing absolutely

continuous function ζ : [T0, T ] → R+ such that, for all s ≤ t in [T0, T ] and
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xi, yi in Rn(i = 1, 2),∣∣d(x1, K(t, y1)
)
− d
(
x2, K(s, y2)

)∣∣ ≤ ∥x1 − x2∥+ ζ(t)− ζ(s) + L∥y1 − y2∥;

(K2) there exists some constant ρ ∈]0,+∞] such that for each (t, y) ∈ [T0, T ]×Rn

the sets K(t, y) are uniformly ρ-prox regulars.

Assumption 2. Let g : [T0, T ]×Rn ×Rn → Rn be a mapping satisfying:

(H1) for any fixed (x, y) ∈ Rn, g(·, x, y) is Lebesgue measurable on [T0, T ];

(H2) for any fixed t ∈ [T0, T ], g(t, ·, ·) is continuous on Rn ×Rn;

(H3) there exists a non-negative function p(·) ∈ L1
R+([T0, T ]) such that, for all

(t, x, y) ∈ [T0, T ]×Rn ×Rn,

∥g(t, x, y)∥ ≤ p(t)(1 + ∥x∥+ ∥y∥).

Assumption 3. Let G : [T0, T ] × Rn × Rn ⇁ Rn be a set-valued mapping with

nonempty closed convex values satisfying:

(G1) G(·, ·, ·) is upper semicontinuous on [T0, T ]×Rn ×Rn;

(G2) there exists a real q > 0, such that, for all (t, x, y) ∈ [T0, T ]×Rn ×Rn,

d(0, G(t, x, y)) ≤ q(1 + ∥x∥+ ∥y∥).

Let us start with an existence result for second-order state-dependent sweeping

process without perturbation. It will be used in the next proposition. The proof is

a careful adaptation of Theorem 3.1 in [28].

Theorem 3.1. Assume that Assumption 1 holds. Then, for every b ∈ Rn and

for every a ∈ K(T0, b), there exists (u, v) ∈ AC([T0, T ])× AC([T0, T ]) such that

(I)


−u̇(t) ∈ NK(t,v(t))(u(t)), a.e. t ∈ [T0, T ],

v(t) = b+

∫ t

T0

u(s)ds, u(t) = a+

∫ t

T0

u̇(s)ds, ∀t ∈ [T0, T ],

u(t) ∈ K(t, v(t)), ∀t ∈ [T0, T ],

with

∥(u̇(t), v̇(t))∥ ≤ 1 + ζ̇(t)

1− L
a.e. t ∈ [T0, T ].

We can easily deduce the following result for second-order differential inclusion

with a single-valued perturbation h ∈ L1
Rn([T0, T ]).

Proposition 3.2. Assume that Assumption 1 holds. Then, for any mapping

h ∈ L1
Rn([T0, T ]) and for every b ∈ Rn and every a ∈ K(T0, b), there exists (u, v) ∈

AC([T0, T ])× AC([T0, T ]) satisfying

(II)


−u̇(t) ∈ NK(t,v(t))(u(t)) + h(t), a.e. t ∈ [T0, T ],

v(t) = b+

∫ t

T0

u(s)ds, u(t) = a+

∫ t

T0

u̇(s)ds, ∀t ∈ [T0, T ],

u(t) ∈ K(t, v(t)), ∀t ∈ [T0, T ].
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Moreover, we have

∥(u̇(t), v̇(t))∥ ≤ 1

1− L

(
1 + ζ̇(t) + 2

(
∥h(t)∥+

∫ t

T0

∥h(τ)∥dτ
))

.

Proof. For any t ∈ [T0, T ], we put φ(t) =
∫ t

T0
h(s)ds and ψ(t) =

∫ t

T0
φ(s)ds.

Consider the set-valued mapping C : [T0, T ]×Rn ⇁ Rn defined by

C(t, y) = K(t, y − ψ(t)) + φ(t), ∀ (t, y) ∈ [T0, T ]×Rn.

Obviously, C satisfies (K2), let verify (K1). For any xi, yi in Rn(i = 1, 2) and any

s ≤ t in [T0, T ], we have

|d(x1, C(t, y1))− d(x2, C(s, y2))|

= |d(x1 − φ(t), K(t, y1 − ψ(t)))− d(x2 − φ(s), K(s, y2 − ψ(s)))|
≤ ∥x1 − x2∥+ ∥φ(t)− φ(s)∥+ ζ(t)− ζ(s) + L

(
∥ψ(t)− ψ(s)∥+ ∥y1 − y2∥

)
≤ ∥x1 − x2∥+ ζ1(t)− ζ1(s) + L∥y1 − y2∥

where

ζ1(t) =

∫ t

T0

(
ζ̇(τ) + ∥h(τ)∥+ L∥φ(τ)∥

)
dτ

is nondecreasing absolutely continuous. Hence, C satisfies (K1), as a ∈ C(T0, b) =

K(T0, b), from Theorem 3.1, there exists (w, z) ∈ AC([T0, T ]) × AC([T0, T ]) such

that 
−ż(t) ∈ NC(t,w(t))(z(t)) a.e. t ∈ [T0, T ];

w(t) = b+

∫ t

T0

w(s)ds, z(t) = a+

∫ t

T0

ż(s)ds, ∀t ∈ [T0, T ];

z(t) ∈ C(t, w(t)), ∀t ∈ [T0, T ],

with ∥(ż(t), ẇ(t))∥ ≤ 1 + ζ̇1(t)

1− L
a.e. t ∈ [T0, T ]. Let defined (u(·), v(·)) by (u(t), v(t)) =

(z(t)− φ(t), w(t)− ψ(t), then, for a.e. t ∈ [T0, T ],

∥(u̇(t) + h(t), v̇(t) + φ(t))∥ ≤ 1 + ζ̇1(t)

1− L

so that, we have

∥u̇(t)∥ ≤ 1 + ζ̇(t) + ∥h(t)∥+ L∥φ(t)∥
1− L

+ ∥h(t)∥

and

∥v̇(t)∥ ≤ 1 + ζ̇(t) + ∥h(t)∥+ L∥φ(t)∥
1− L

+ ∥φ(t))∥

since 0 < L < 1, we can write

∥u̇(t)∥ ≤ 1 + ζ̇(t) + 2∥h(t)∥+ ∥φ(t)∥
1− L
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and

∥v̇(t)∥ ≤ 1 + ζ̇(t) + ∥h(t)∥+ 2∥φ(t)∥
1− L

.

So, we conclude that

∥(u̇(t), v̇(t))∥ ≤
1 + ζ̇(t) + 2

(
∥h(t)∥+ ∥φ(t)∥

)
1− L

.

Consequently (u(·), v(·)) satisfies (II), and we have

∥(u̇(t), v̇(t))∥ ≤ 1

1− L

(
1 + ζ̇(t) + 2

(
∥h(t)∥+

∫ t

T0

∥h(τ)∥dτ
))

.

The proof is then complete. □

Now, we give the main result.

Theorem 3.3. Assume that Assumptions 1, 2 and 3 hold. Then, for every

b ∈ Rn and every a ∈ K(T0, b), there exists (u, v) ∈ AC([T0, T ]) × AC([T0, T ])

satisfying (P).

Proof. For each (t, x, y) ∈ [T0, T ]×Rn ×Rn, denote by π(·, ·, ·) the element of

minimal norm of the closed convex set G(t, x, y) of Rn, that is

π(t, x, y) = ProjG(t,x,y)(0).

We put f(t, (x, y)) = g(t, x, y) + π(t, x, y) and β(t) = p(t) + q, by (H1), (H3) and

(G1), f(·, (x, y)) is Lebesgue measurable and for all (t, x, y) ∈ [T0, T ]×Rn ×Rn,

∥f(t, (x, y))∥ ≤ β(t)(1 + ∥(x, y)∥). (1)

We suppose that ∫ T

T0

β(s)ds ≤ 1− L

4(1 + T )
. (2)

Construction of sequences. Consider, for every n ∈ N, a partition of [T0, T ]

defined by tni = T0 + iT−T0

n
(0 ≤ i ≤ n). For a ∈ K(T0, b), let us consider the

following problem on the interval [T0, t
n
1 ] :

(P0)

{
−u̇(t) ∈ NK(t,v(t))(u(t)) + f

(
t, (b, a)

)
a.e. t ∈ [T0, t

n
1 ],

v(T0) = b, u(T0) = a ∈ K(T0, b).

By Proposition 3.2, there exists an AC([T0, t
n
1 ])×AC([T0, t

n
1 ]) solution of (P0) that

we denote by (un0 , v
n
0 ). Now, since un0 (t

n
1 ) ∈ K(tn1 , v

n
0 (t

n
1 )) is well defined, on the

interval [tn1 , t
n
2 ] the problem

(P1)

{
−u̇n1 (t) ∈ NK(t,vn1 (t))

(un1 (t)) + f
(
t, vn0 (t

n
1 ), (u

n
0 (t

n
1 ))
)
a.e. t ∈ [tn1 , t

n
2 ],

un0 (t
n
1 ) ∈ K(tn1 , v

n
0 (t

n
1 )),
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admits anAC([tn1 , t
n
2 ])×AC([tn1 , tn2 ]) solution (un1 , v

n
1 ) with (un1 (t

n
1 ), v

n
1 (t

n
1 )) = (un0 (t

n
1 ), v

n
0 (t

n
1 )).

So, for each n, there exists a finite sequence (uni , v
n
i ) ∈ AC([tni , t

n
i+1])×AC([tni , t

n
i+1])

with (uni (t
n
i ), v

n
i (t

n
i )) = (uni−1(t

n
i ), v

n
i−1(t

n
i )) such that, for each i ∈ {0, ..., n− 1},

(Pi)

{
−u̇ni (t) ∈ NK(t,vni (t))

(uni (t)) + f
(
t, (vni−1(t

n
i ), u

n
i−1(t

n
i ))
)
a.e. t ∈ [tni , t

n
i+1],

uni−1(t
n
i ) ∈ K(tni , v

n
i−1(t

n
i )),

where (un−1(T0), v
n
−1(T0)) = (a, b) and a.e. t ∈ [tni , t

n
i+1]

∥(u̇ni (t), v̇ni (t))∥ ≤ 1

1− L

(
1 + ζ̇(t) + 2∥f

(
t, (vni−1(t

n
i ), u

n
i−1(t

n
i ))
)
∥

+2

∫ t

tni

∥f
(
τ, (vni−1(t

n
i ), u

n
i−1(t

n
i ))
)
∥dτ
)
.

Define the mapping (un, vn) : [T0, T ] → Rn ×Rn by (un(t), vn(t)) = (uni (t), v
n
i (t)),

for all t ∈ [tni , t
n
i+1], i ∈ {0, ..., n− 1} and put

θn(t) =

{
tnk if t ∈ [tnk , t

n
k+1[

T if t = tnn.

For all n ∈ N, (un, vn) ∈ AC([T0, T ])× AC([T0, T ]) and{
u̇n(t) ∈ −NK(t,vn(t))(un(t)) + f

(
t, (vn(θn(t)), un(θn(t)))

)
a.e. t ∈ [T0, T ],

un(t) ∈ K(t, vn(t)), ∀t ∈ [T0, T ], un(T0) = a, vn(T0) = b,

with a.e. t ∈ [T0, T ]

∥(u̇n(t), v̇n(t))∥ ≤ 1

1− L

(
1 + ζ̇(t) + 2∥f

(
t, (vn(θn(t)), un(θn(t)))

)
∥

+ 2

∫ t

θn(t)

∥f
(
τ, (vn(θn(t)), un(θn(t)))

)
∥dτ
)
. (3)

Convergence of the sequences. By (3.3), we have

∥(un(tni+1), vn(t
n
i+1))∥ ≤ ∥(un(tni ), vn(tni ))∥+

1

1− L

∫ tni+1

tni

(
1 + ζ̇(s)+

2(∥f(s, (vn(tni ), un(tni )))∥+
∫ s

tni

∥f(τ, (vn(tni ), un(tni )))∥dτ)
)
ds.

By iteration, we obtain

∥(un(tni+1), vn(t
n
i+1))∥ ≤ ∥(a, b)∥+ 1

1− L

(
tni+1 +

i∑
k=0

∫ tnk+1

tnk

(
ζ̇(s)+

2
(
∥f
(
s, (vn(t

n
k), un(t

n
k))
)
∥+

∫ s

tnk

∥f
(
τ, (vn(t

n
k), un(t

n
k))
)
∥dτ
))
ds

)

≤ ∥(a, b)∥+ 1

1− L

(
tni+1 +

∫ tni+1

T0

ζ̇(s)ds+
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2
i∑

k=0

∫ tnk+1

tnk

(
∥f
(
s, (vn(t

n
k), un(t

n
k))
)
∥+

∫ s

tnk

∥f
(
τ, (vn(t

n
k), un(t

n
k))
)
∥dτ
)
ds

)
.

By (1), one has

∥(un(tni+1), vn(t
n
i+1))∥ ≤ ∥(a, b)∥+ 1

1− L

(
tni+1 +

∫ tni+1

T0

ζ̇(s)ds

)
+

2(1 + tni+1 − T0)

1− L

i∑
k=0

(
1 + ∥(un(tnk), vn(tnk))∥

)∫ tnk+1

tnk

β(s)ds,

so, we get

∥(un(tni+1), vn(t
n
i+1))∥ ≤ ∥(a, b)∥+ 1

1− L

(
tni+1 +

∫ tni+1

T0

ζ̇(s)ds

)

+
2(1 + tni+1)

1− L

(
1 + max

0≤k≤i
∥(un(tnk), vn(tnk)∥

)∫ tni+1

T0

β(s)ds,

for each i = 0, ..., n− 1, thus

max
0≤k≤n

∥(un(tnk), vn(tnk))∥ ≤ ∥(a, b)∥+ 1

1− L

(
T +

∫ T

T0

ζ̇(s)ds

)

+
2(1 + T )

1− L

(
1 + max

0≤k≤n
∥(un(tnk), vn(tnk))∥

)∫ T

T0

β(s)ds.

Taking in account (2), we obtain

max
0≤k≤n

∥(un(tnk), vn(tnk))∥ ≤ ∥(a, b)∥+ 1

1− L

(
T +

∫ T

T0

ζ̇(s)ds

)
+
1

2
+

1

2
max
0≤k≤n

∥(un(tnk), vn(tnk))∥.

Then, for all n ∈ N,

∥(un(θn(t)), vn(θn(t)))∥ ≤ 1 + 2

(
∥(a, b)∥+ 1

1− L

(
T +

∫ T

T0

ζ̇(s)ds
))

:= m. (4)

By (1) and (4) one has for any n and almost all t ∈ [T0, T ]

∥f(t, (un(θn(t)), vn(θn(t)))∥ ≤ (1 +m)β(t) := r(t). (5)

According to (3.3) and (3.5), one has

∥(u̇n(t), v̇n(t))∥ ≤ 1

1− L

(
1 + ζ̇(t) + 2(1 + T )r(t)

)
:= m1(t). (6)

As θn(t) → t and m1 ∈ L1
R+(T0, T ) it follows from (6) that

lim
n→∞

||(un(θn(t)), vn(θn(t)))− (un(t), vn(t))|| = 0, (7)
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and (un, vn) converges in CRn×Rn([T0, T ]) to (u, v), thanks to Theorem 0.3.4 in [10].

Furthermore,

∥g(t, vn(θn(t)), un(θn(t)))∥ ≤ (1 +m)p(t),

by the continuity of the mapping g(t, ·, ·) we get

g(t, vn(·), un(·)) → g(t, v(·), u(·)),

and

∥g(t, v(t), u(t))∥ ≤ (1 +m)p(t).

On the other hand, we have

||π(t, vn(θn(t)), un(θn(t)))∥ ≤ (1 +m)q

for all n ≥ n0 and for all t ∈ [T0, T ], we put

(π(·, vn(θn(·)), un(θn(·)))) = (ρn(·)),

so (ρn(·)) is integrably bounded, taking a subsequence if necessary, we may conclude

that (ρn(·)) converges σ(L1
Rn , L∞

Rn) to some mapping ρ(·) ∈ L1
Rn([T0, T ]) with

∥ρ(t)∥ ≤ q(1 +m).

Now, we proceed to prove that

−u̇(t) ∈ NK(t,v(t))(u(t)) +G(t, v(t), u(t)) + g(t, v(t), u(t)) a.e. ∈ [T0, T ].

First, we check that u(t) ∈ K(t, v(t)), for all t ∈ [T0, T ]. Indeed, for every t ∈ [T0, T ]

and for every n, we have

d(un(t), K(t, v(t))) ≤ ||un(t)− un(θn(t))||+ d(un(θn(t)), K(t, v(t)))

≤ ||un(t)− un(θn(t))||+H(K(θn(t), vn(θn(t))), K(t, v(t)))

≤ ||un(t)− un(θn(t))||+ |ζ(t)− ζ(θn(t))|+ L||vn(θn(t))− vn(t)||,

passing to the limit when n → ∞, in the preceding inequality, we get u(t) ∈
K(t, v(t)).

On the other hand, if we put (f(·, vn(θn(·)), un(θn(·)))) = (ln(·)), (ln) converges

σ(L1
Rn , L∞

Rn) to l with ∥l(t)∥ ≤ r(t), and we have

∥u̇n(t)− ln(t)∥ ≤ ∥u̇n(t)∥+ ∥ln(t)∥ ≤ λ(t),

with λ(t) = m1(t) + r(t), then −u̇n(t) + ln(t) ∈ λ(t)BRn , since −u̇n(t) + ln(t) ∈
NK(t,vn(t))(un(t)), we get by (1) of Proposition 2.1

−u̇n(t) + ln(t) ∈ +λ(t)∂d(un(t), K(t, vn(t))).

Remark that (−u̇n + ln, ρn) weakly converges in L1
Rn×Rn([T0, T ]) to (−u̇+ l, ρ). An

application of the Mazur’s theorem to (−u̇n + ln, ρn) provides a sequence (wn, ζn)

with

wn ∈ co{−u̇m + lm : m ≥ n} and ζn ∈ co{ρm : m ≥ n}
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such that (wn, ζn) converges strongly in L1
Rn×Rn([T0, T ]) to (−u̇ + l, ρ). We can

extract from (wn, ζn) a subsequence which converges a.e. to (−u̇+ l, ρ). Then, there
is a Lebesgue negligible set S ⊂ [T0, T ] such that for every t ∈ [T0, T ] \ S

−u̇(t) + l(t) ∈
⋂
n≥0

{wm(t) : m ≥ n} ⊂
⋂
n≥0

co{−u̇m(t) + lm(t) : m ≥ n} (3.8)

ρ(t) ∈
⋂
n≥0

{ζm(t) : m ≥ n} ⊂
⋂
n≥0

co{ρm(t) : m ≥ n}. (3.9)

Fix any t ∈ [T0, T ] \ S, n ≥ n0 and µ ∈ Rn, then the relation (3.8) gives

⟨µ,−u̇(t) + l(t)⟩ ≤ lim sup
n→∞

δ∗(µ, λ(t)∂d(un(t), K(t, v(t)))

≤ δ∗(µ, λ(t)∂d(u(t), K(t, v(t))),

where the first inequality follows from the characterization of convex hull and the

second one follows from Proposition 2.1. Taking the supremum over µ ∈ Rn, we

deduce that

δ(−u̇(t) + l(t), λ(t)∂d(u(t), K(t, v(t))) =

δ∗∗(−u̇(t) + l(t), λ(t)∂d(u(t), K(t, v(t))) ≤ 0,

which entails

−u̇(t) + l(t) ∈ λ(t)∂d(u(t), K(t, v(t))) ⊂ NK(t,v(t))(u(t)).

Further, the relation (3.9) gives

⟨µ, ρ(t)⟩ ≤ lim sup
n→∞

δ∗(µ,G(t, vn(θn(t)), un(θn(t))),

since δ∗(µ,G(t, ·, ·)) is upper semicontinuous on [T0, T ]×Rn ×Rn, we get

⟨µ, ρ(t)⟩ ≤ δ∗(µ,G(t, u(t), v(t))).

So, d(ρ(t), G(t, u(t), v(t))) ≤ 0, and we obtain

ρ(t) ∈ G(t, u(t), v(t)) a.e. ∈ [T0, T ].

Consequently −u̇(t) ∈ NK(t,v(t))(u(t)) + G(t, v(t), u(t)) + g(t, v(t), u(t)). This com-

pletes the proof of the theorem.

When
∫ T

T0
β(s)ds > 1−L

4(1+T )
, we subdivide [T0, T ] into intervals satisfying (2) and

thanks to the foregoing, the problem (P) has a solution. □
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4. Conclusion

In this work, we studied the existence of solution to a second order perturbed

state-dependent non-convex sweeping process. The existence is established without

use of the classical approaches of fixed point theory and catching up algorithm. In

addition, we consider a general unbounded perturbation as a sum of a single valued

and set-valued mappings, we weaken the hypotheses on the perturbation by taking a

Carathéodory mapping satisfying a linear growth condition and an unbounded set-

valued perturbation for which only the element of minimum norm satisfies a linear

growth condition. Note that unboundedness of values of set-valued mappings is a

quite natural property in the optimal control theory, see [26]. This result, stated

for nonconvex uniformly r-prox regular sets, can be extended to a more large class

of sets, namely, subsmooth sets in a Hilbert space. A natural question would be

an application to optimal control and relaxation problems. Both studies will be the

subject of forthcoming research projects.
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