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On the zeros and critical points of a polynomial
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ABSTRACT. Let P(2) = ap+aiz+---+an,_12"" 1 +2" be a polynomial of degree
n. The Gauss-Lucas Theorem asserts that the zeros of the derivative P’(z) =
a4+ -+ (n—1)a,_12""2 + nz""!, lie in the convex hull of the zeros of P(z).
Given a zero of P(z) or P'(z), A. Aziz [1], determined regions which contain at
least one zero of P(z) or P’'(z) respectively. In this paper, we give simple proofs
and improved version of various results proved in [1], concerning the zeros of a
polynomial and its derivative.

1. Introduction

Let a polynomial P(z) of degree n has all it’s zeros in |z| < 1. The Gauss-Lucas
Theorem [4], asserts that all its critical points also lie in |z| < 1. Let P(2*) = 0, then
the famous Sendov’s conjecture [4], says that the closed disk |z — 2*| < 1 contains
a critical point of P(z), (i.e. a zero of P'(z)). The conjecture has been proved for
the polynomials of degree at most eight [2]. Also, the conjecture is true for some
special class of polynomials such as the polynomials having a zero at the origin and
the polynomials having all their zeros on |z| = 1, as shown in [2]. However, the
general version is still unproved. Aziz[1], proved the following results regarding the
relationship between the zeros and critical points of a polynomial.

Theorem 1.1. If P(z) is a polynomial of degree n and w is a zero of P'(z), then
for every given real or complex number «, P(z) has at least one zero in the region
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Theorem 1.2. If all the zeros of a polynomial P(z) of degree n lie in |z| < 1
and P(a) = 0,a # 0, then for every positive integer m, the polynomial F(z) =
mP(z) + zP'(z) has at least one zero in the disk

|z —a| < 1. (2)

Theorem 1.3. If P(z) = (z—a)Q(z) is a polynomial of degree n and if all the zeros
of Q(2) lie in the disk |z + a — a| < || for some real or complex number a # 0,
then at least one zero of P'(z) lies in the disk

(0 (0
—a+ 2 <4 3
‘Z “+2’—’2) (3)

2. Main Results

In this paper, we give simple proofs and improved version of various results proved
in [1], concerning the zeros of a polynomial and its derivative.In the first result, we
not only give a simple proof, but also an improved version of Theorem 1.1.

Theorem 2.1. Let P(z) be a polynomial of degree n and P'(w) = 0, then for every
given real or complex number o, P(z) has at least one zero in each of the regions

o+ z oa— 2z
— < 4
‘w 2 ‘—‘ 2 ‘ (4)
and
o+ z oa—z
— > . 5
‘w 2 ‘—‘ 2 ’ (5)

By using Lemma 3.2, we will now prove that Sendov’s Conjecture is true incase

P(0) = 0.

Theorem 2.2. Let P(z) be a polynomial having all it’s zeros in |z| <1 and P(0) =
0. Then, for any zero z* of P(z), the closed disk |z — z*| < 1 contains a zero of

P'(2).

The next result shows that Theorem 1.3, is a simple consequence of Lemma 3.3, by
making a simple transformation.

Theorem 2.3. If P(z) = (z—a)Q(z) is a polynomial of degree n and if all the zeros
of Q(2) lie in the region |z + o — a| < |al for some real or complex number o # 0,
then atleast one zero of P'(z) lie in the region

[

‘ <9 (6)
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3. Lemmas
However, for the proof of our results, we need the following lemmas.

Lemma 3.1. (Laguerre Theorem) If all the zeros of the polynomial P(z) lie in the
circular domain K and if w is any zero of polar derivative Do P(2) = nP(z) + (o —
2)P'(z), then not both o and w lie outside K.

Lemma 3.2. If P(z) is a polynomial of degree n such that P(z1) = P(z3),21 # 22,
then P'(z) has at least one zero in each of the regions

|z — 21| < |z — 29
and
|2 = 21| = |2 — 2. (7)

This result is a simple consequence of Grace’s Theorem [4]. The following result is
due to Goodman, Rahman and Ratti [3].

Lemma 3.3. If P(z) is a polynomial of degree n having all it’s zeros in |z| < 1 and
P(1) =0, then the disk |z — 1| < 3 contains a zero of P'(z).

4. Proofs
Proof of Theorem 2.1: We observe that the regions

o+ z oa— 2z
— <
‘w 2 ‘—‘ 2 ‘
and
‘w_a+z‘>‘a—z‘
2 - 2

are respectively equivalent to the regions

|z — 2w —a)| < |z —q
and
|z — 2w —a)| > |z — af.

These two regions are simply the right and left half planes respectively, formed by
a line passing through w. The direction of the line depends on the point «. Since
w is a critical point of P(z), therefore, by Gauss - Lucas Theorem, there are zeros
of P(z) in both the half planes . This proves the theorem.

Proof of Theorem 2.2. By Gauss- Lucas Theorem, all zeros of P'(z) lie in |z| < 1.
Also,
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P(0) = 0= P(z").
By Lemma 3.2, the region |z — 2*| < |z — 0| = |z| contains a zero w of P'(z). But
|w| <1, and hence

we{zel/lz—2"| < |z} n{z e C/|z| <1}.
From the above, we observe that w satisfies the inequality |w — z*| < 1. This proves
the theorem.
Proof of Theorem 2.5. For any o # 0 € C', we consider the polynomial

G(z) =P(az+ (a —a)).
Then, G(z) has all its zero in |z| < 1 and G(1) = P(a) = 0. Thus, by Lemma 3.3,
the disk L

< = contains a zero of

1
) 2

G'(z) =aP (az+ (a— ).

So, let G'(z*) = 0, with

1
ZF — 5‘ < 2 then w = az* + a — a, is a zero of P'(z),

e} Q@
which is contained in the disk |z —a + 5’ < % This proves the result.
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