تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,622 |
تعداد مشاهده مقاله | 78,384,045 |
تعداد دریافت فایل اصل مقاله | 55,419,112 |
Equivalent Viscous Damping in Steel Structures Equipped with Dampers. | ||
Journal of Structural Engineering and Geo-Techniques | ||
مقاله 1، دوره 11، شماره 2 - شماره پیاپی 27، مهر 2021، صفحه 1-12 اصل مقاله (591.48 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22094/jseg.2021.688672 | ||
نویسندگان | ||
Seyed Behdad Alehojjat1؛ Omid Bahar* 2؛ Masood Yakhchalian1 | ||
1Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran | ||
2Structural Engineering Research Center, International Institute of Earthquake Engineering & Seismology (IIEES), Tehran, Iran | ||
چکیده | ||
Determination of equivalent viscous damping (EVD) is an important step in the direct displacement-based design (DDBD) method. This study aims to investigate whether the proposed method used in the equivalent lateral force (ELF) procedure, according to ASCE/SEI 7, for the calculation of effective damping in steel structures equipped with fluid viscous dampers (FVDs) can be used in the DDBD method. In order to evaluate the accuracy of this method, modified Jacobsen’s method and the approach used in Pennucci et al.’s study are applied to determine the EVD. At first, a set of steel structures with different heights and bays are designed for 0.75, 0.85 and 1.0 of the design base shears based on the primary calculation of the ELF procedure and then nonlinear time history analyses are carried out to determine the dampers constants and the EVD at two seismic hazard levels, i.e., design earthquake (DE) and maximum considered earthquake (MCE). According to the obtained results for the EVD, it is found that the obtained results in the ELF procedure has acceptably matched with Pennucci et al.’s approach. On the other hand, there are some differences between the obtained results and those obtained from modified Jacobsen’s method. Therefore, the ELF proposed equation for calculating EVD can be used in the DDBD method in mid-rise steel structures equipped with FVDs to accurately determine the EVD. | ||
کلیدواژهها | ||
equivalent lateral force procedure؛ equivalent viscous damping؛ fluid viscous damper؛ direct displacement-based design | ||
مراجع | ||
1.Yakhchalian M., Asgarkhani N., Yakhchalian M., “Evaluation of deflection amplification factor for steel buckling restrained braced frames”, Journal of Building Engineering; 2020, 30, 101228. https://doi.org/10.1016/j.jobe.2020.101228 2.Gulkan P., Sozen M., “Inelastic response of reinforced concrete structures to earthquake motions”, ACI J; 1974, 71(12), 604–610. 3.Shibata A., Sozen M., “Substitute structure method for seismic design in reinforced concrete”, Journal of Structural Division ASCE; 1976, 102(ST1), 1– 18. 4.Jacobsen, L.S., “Steady forced vibration as influenced by damping”, Transactions of ASME; 1930, 52, 169–181. 5.Jacobsen, L.S., “Damping in composite structures” Proc., 2nd World Conf. on Earthquake Engineering; 1960, Vol. 2, Science Council of Japan, Tokyo, 1029–1044. 6.Wijesundara, K.K., Nascimbene, R., Sullivan, T.J., “Equivalent viscous damping for steel concentrically braced frame structures”, Bull Earthquake Eng; 2011, 9, 1535–1558. https://doi.org/10.1007/s10518-011-9272-4 7.Rosenblueth, E., Herrera, I., “On a kind of hysteretic damping”, ASCE Journal of Engineering Mechanics; 1964, 90(4), 37–48. 8.Dwairi, H.M., Kowalsky, M.J., Nau, J.M., “Equivalent damping in support of direct displacement-based design”, Journal of Earthquake Engineering; 2007, 11(4), 512‒530. http://dx.doi.org/10.1080/13632460601033884 9.Kowalsky, M.J., Ayers, J.P., “Investigation of equivalent viscous damping for direct displacementbased design”, The Third US-Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced Concrete Building Structures; 16–18 August 2001, Seattle, Washington, Berkeley: Pacific Earthquake Engineering Research Center, University of California, 173–185. 10.Grant, D.N., Blandon, C.A., Priestley, M.J.N., “Modelling inelastic response in direct displacement-based design”, Report 2005/03, IUSS Press, Pavia; 2005. 11.Priestley, M.J.N., Calvi, G.M., Kowalsky, M.J., “Displacement-Based Design of Structures”, IUSS Press, Pavia; 2007. 12.Pennucci, D., Sullivan, T.J., Calvi, G.M., “Displacement Reduction Factors for the Design of Medium and Long Period Structures”, Journal of Earthquake Engineering; 2011, 15:S1, 1‒29. http://dx.doi.org/10.1080/13632469.2011.562073 [12]<br style=" font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: -webkit-auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-size-adjust: auto; -web 13.Abadi, R.E., Bahar, O., “Investigation of the LS level hysteretic damping capacity of steel MR frames’ needs for the direct displacement-based design method”, KSCE J. Civil Eng; 2018, 22, 1304–1315. https://doi.org/10.1007/s12205-017-1321-3 14.Ramirez, O.M, Constantinou, M.C, Kircher, C.A., Whittaker, A.S., Johnson, M.W., Gomez, J.D., Chrysostomou, C.Z., “Development and evaluation of simplified procedures for analysis and design of buildings with passive energy dissipation systems”, Report No: MCEER-00-0010 Multidisciplinary Center for Earthquake Engineering Research (MCEER), University of New York at Buffalo, NY.; 2001. 15.ASCE/SEI 7-16. Minimum design loads for buildings and other structures, Reston (Virginia): American Society of Civil Engineers; 2017. 16.Sullivan, T.J., Lago, A., “Towards a simplified Direct DBD procedure for the seismic design of moment resisting frames with viscous dampers”, Engineering Structures; 2012, 35, 140-148. https://doi.org/10.1016/j.engstruct.2011.11.010 17.Noruzvand, M., Mohebbi, M., Shakeri, K., “Modified direct displacement‐based design approach for structures equipped with fluid viscous damper”, Struct Control Health Monit; 2019, 27(1). https://doi.org/10.1002/stc.2465 18.Moradpour, S., Dehestani, M., “Optimal DDBD procedure for designing steel structures with nonlinear fluid viscous dampers”, Structures; 2019, Volume 22, 154‒174. https://doi.org/10.1016/j.istruc.2019.08.005 19.Alehojjat, S.B., Bahar, O., Yakhchalian, M., “Improvements in the direct displacement-based design procedure for mid-rise steel MRFs equipped with viscous dampers”, Structures; 2021, Vol. 34, 1636‒1650. https://doi.org/10.1016/j.istruc.2021.08.047 20.Priestley, M.J.N., “Myths and fallacies in earthquake engineering conflicts between design and reality”, Bulletin of the New Zealand National Society for Earthquake Engineering; 1993, Vol. 26(3), 329‒341. 21.Sullivan, T.J., Priestley, M.J.N., Calvi, G.M., “A Model Code for the Displacement-Based Seismic Design of Structures (DBD12)”, IUSS Press, Pavia; 2007. ISBN: 978-88-6198-072-3. 22.Standard No. 2800. Iranian Code of Practice for Seismic Resistant Design of Buildings, Standard No. 2800, 4th edition, BHRC Publication No. S- 253, Iran, Tehran; 2014. 23.PEER, PEER NGA database, Pacific Earthquake Engineering Research, Univ. of California, Berkeley, CA.; 2005. https://ngawest2.berkeley.edu/<br style=" font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: -webkit-auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0 | ||
آمار تعداد مشاهده مقاله: 191 تعداد دریافت فایل اصل مقاله: 376 |