تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,622 |
تعداد مشاهده مقاله | 78,389,421 |
تعداد دریافت فایل اصل مقاله | 55,423,383 |
Modeling of Accumulated Energy Ratio (AER) for Estimating LiqueFaction Potential Using Artificial Neural Network (ANN) and Gene Expression Programming (GEP) (using data from Tabriz) | ||
Journal of Structural Engineering and Geo-Techniques | ||
مقاله 2، دوره 11، شماره 2 - شماره پیاپی 27، مهر 2021، صفحه 13-26 اصل مقاله (858.65 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22094/jseg.2021.688673 | ||
نویسندگان | ||
Armin Sahebkaram Alamdari؛ Rouzbeh Dabiri* ؛ Rasoul Jani؛ Fariba Behrouz Sarand | ||
Department of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran | ||
چکیده | ||
Presenting a model specific to the city of Tabriz to estimate the liquefaction potential due to the region's seismicity and the high groundwater level can be effective in dealing with and predicting solutions to deal with this phenomenon. In recent years, the accumulation energy ratio (AER) as a parameter for estimating the liquefaction potential in the energy-based method proposed by Kokusho (2013) has been considered by many researchers. In this research, using perceptron multilayer (MLP) and radial base function (RBF) methods in artificial neural network (ANN) and genetic expression programming (GEP), the accumulation energy ratio using seismic and geotechnical data is modeled for the city of Tabriz. These modeling’s performed by all three methods are well consistent with the outputs. Still, the modeling performed using the Perceptron Multilayer (MLP) method is very compatible with the outputs and can estimate the results with an acceptable percentage. The relationship presented by genetic expression programming (GEP), which is trained with local data, can also yield satisfactory results from estimating the rate of accumulated energy in the study area and provided an independent and accessible relationship trained. With data specific to the study area, there is another advantage. | ||
کلیدواژهها | ||
Liquefaction potential؛ Accumulated energy ratio؛ Artificial neural network؛ Genetic expression programming؛ Tabriz city | ||
مراجع | ||
1.Kokusho, T. ―Liquefaction potential evaluations: energy-based method versus stress-based method‖, Canadian Geotechnical Journal; 2013, 50: 1088–1099. 2.Kokusho, T., Mimori, Y. ―Liquefaction potential evaluations by energy-based method and stress-based method for various ground motions‖, Soil Dynamic sand Earthquake Engineering; 2015, 75: 130–146. 3.Kokusho, T., Kaneko, Y. ―Energy evaluation for liquefaction-induced strain of loose sands by harmonic and irregular loading tests‖, Soil Dynamics and Earthquake Engineering; 2018, 114: 362-377. 4.Masulli, F., Studer, L. ―Time series forecasting and neural networks‖, In: Proc. Int. Joint Conf. on Neural Networks (IJCNN), Washington, DC. New York, 1999. 5.Sahebkaram Alamdari, A., Dabiri, R., Jani, R., and Behrouz Sarand, F. ―Seismic Zoning of Tabriz City Area by Stochastic Finite Fault Model with Acts of Site Impact‖, Soils and Rocks; 2021, 44(1): 1-13. 6.Sahebkaram Alamdari, A., Dabiri, R., Jani, R., and Behrouz Sarand, F. ―Evaluation of Liquefaction Potential by Energy-based and Stress-based Methods and Gene Expressing Programming (Case study: Tabriz City)‖, Indian Geotechnical Journal; 2021, (in review). 7.Zhang, J., Juang, C. H., Martin, J. R., Huang, H. W. ―Inter-region variability of Robertson and Wride method for liquefaction hazard analysis‖, Engineering Geology; 2016, 203: 191–203. 8.Muduli, P. K., Das, S. K. ―Model uncertainty of SPT-based method for evaluation of seismic soil liquefaction potential using multi-gene genetic programming‖, Soils and Foundations; 2015, 55(2): 258–275. 9.Goharzay, M., Noorzad, A., Ardakani, A. M., Jalal, M. ―A worldwide SPT-based soil liquefaction triggering analysis utilizing gene expression programming and Bayesian probabilistic method‖, Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(4): 683-693 10.Pirhadi, N., Tang, X., Yang, Q., Kang, F. ―A New Equation to Evaluate Liquefaction Triggering Using the Response Surface Method and Parametric Sensitivity Analysis‖, Sustainability; 2018, 11(1): 1-14. 11.Hu, J., Liu, H. ―Identification of ground motion intensity measure and its application for predicting soil liquefaction potential based on the Bayesian network method‖, Engineering geology; 2019, 248: 34-49. 12.Rahbarzare, A., Azadi, M. ―Improving prediction of soil liquefaction using hybrid optimization algorithms and a fuzzy support vector machine‖, Bulletin of Engineering Geology and the Environment; 2019, 78: 4977–4987. 13.Zhang, J., Wang, Y. ―An ensemble method to improve prediction of earthquake-induced soil liquefaction: a multi-dataset study‖, Neural Computing and Applications; 2020, 33: 1533–1546. 14.Batzel, T. D., Lee, K.Y. ―A diagonally recurrent neural network approach to sensorless operation of the permanent magnet synchronous motor‖, IEEE Power Engineering Society Summer Meeting; 2000, 4: 2441-2445.<br style=" font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: -webkit-auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-size-adjust: auto; -web 15.Bhushan, B., Singh, M., Hage, Y. ―Identification and control using MLP, Elman, NARXSP and radial basis function networks: a comparative analysis‖, Artificial Intellengce Review; 2012, 37: 133–156. 16.Haykin, S. ―Neural Networks, a Comprehensive Foundation‖, Macmillan College Publishing Co., New York, USA, 1999. 17.Hsu, K., Gupta, H. V. ―Sorooshian S. Artificial neural network modeling of the rainfall-runoff process‖, Water Resource Research; 1995, 31(10): 2517–2530. 18.Ghritlahre, H. K., Prasad, R. K. ―Application of ANN technique to predict the performance of solar collector systems – a review‖, renew. Sustain Energy Revew; 2018, 84: 75–88. 19.Wilamowski, B. M., Chen, Y., Malinowski, A. ―Efficient algorithm for training neural networks with one hidden layer‖, International Joint Conference on Neural Networks, Washington, DC, USA City, 1999, 1725–1728. 20.Hagan, M. T., Menhaj, M. B. ―Training feedforward networks with the Marquardt algorithm‖, IEEE Transactions on Neural Networks; 1994, 5: 989–993. 21.Zendehboudi, A., Tatar, A. ―Utilization of the RBF network to model the nucleate pool boiling heat transfer properties of refrigerantoil mixtures with nanoparticles‖ J. Mol. Liq.; 2017, 247: 304–312. 22.Howlett, R. J., Jain, L. D. ―Radial basis function networks: 1. Recent developments in theory and applications‖, Heidelberg (Germany): Physica-Verlag, A SpringerVerlag Company, (2001). 23.Howlett, R. J., Jain, L. D. ―Radial basis function networks: 2. Recent developments in theory and applications‖, Heidelberg (Germany): Physica-Verlag, A SpringerVerlag Company, (2001). 24.Bortman, M., Aladjem, M. ―A Growing and Pruning Method for Radial Basis Function Networks‖, IEEE Transactions on Neural Networks; 2009, 20(6): 1039-1045. 25.Koza J. R. ―Genetic Programming: On the Programming of Computers by Means of Natural Selection‖ MIT Press, Cambridge, MA. (1992). 26.Ferreira C. ―Gene expression programming: a new adaptive algorithm for solving problems‖, Complex Systems; 2001, 13(2): 87–129. 27.Ferreira, C. ―Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence‖, Springer-Verlag, Germany, 2th ed., 2006, 478. 28.Lopez, H. S., Weinert, W. R. ―An Enhanced Gene Expression Programming Approach for Symbolic Regression Problems‖, International Journal of Applied Mathematics in Computer Science; 2004, 14: 375-384. 29.Ferreira, C. ―A Quick Introduction to Gene Expression Programming. From GEP Tutorials: A Gepsoft Web Resource‖, http://www.gene-expression-programming, 2010. 30.Sahebkaram Alamdari, A., Najafi. A. ―The Study of the Liquefaction Probability and Estimation of the Relative Importance of Effective Parameters Using Fuzzy Clustering and Genetic Programming‖, Journal of Civil and Environmental Engineering; 2018, 47(4): 37-46. 31.Cetin, K. O., Seed, R. B., Kayen, R. E., Moss, R. E. S., Bilge, H. T., Ilgac, M., Chowdhury, K. ―Summary of SPT based field case history data of Cetin 2016 Database‖, Report No: METU / GTENG 08/16-01. (2016). 32.Ferreira, C. ―Gene expression programming and the evolution of computer programs. In: Castro, L.N.D., Zuben, F.J.V. (Eds.)‖, Recent Developments in Biologically Inspired Computing; 2004, 82–103. 33.Alkroosh, I., Nikraz, H. ―Predicting axial capacity of driven piles in cohesive soils using intelligent computing‖, Engineering Applying Artificial Intelligence; 2011, 25(3): 618-627. 34.Ahangari, K., Moeinossadat, S. R., Behnia D. ―Estimation of tunnelling-induced settlement by modern intelligent methods‖, Soils and Foundations; 2015, 55(4): 737– 748.<br style=" font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: -webkit-auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -web | ||
آمار تعداد مشاهده مقاله: 154 تعداد دریافت فایل اصل مقاله: 165 |