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Exact controllability and continuous dependence

of solution of a conformable fractional control

system

Sanjukta Das

Abstract. The exact controllability of a conformable fractional differential sys-

tem is established in this paper. The system is described by a non-densely defined

linear part satisfying the Hille Yosida condition, and a control term appearing

in the nonlinear part. The existence of mild solution and exact controllability is

proved by Banach fixed point theorem for the system with non-local conditions

and deviated argument. The continuous dependence of the mild solution is also

studied. An example is discussed to illustrate the results.

1. Introduction

In this paper existence, continuous dependence of mild solution and exact con-

trollability of a class of conformable fractional control system is discussed. The

linear part of the system is non-densely defined with the control parameter also ap-

pearing in the nonlinear part. Deviated argument and non-local conditions are used

to capture physical conditions. Here the following conformable fractional differential

control system is studied in a Hilbert space (X, ||.||).

Dαx(t) = Ax(t) +Bu(t) + f(t, x(c(x(t), t)), u(t)), 0 < t ≤ a,

x(0) = x0 + g(x) (1)
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where 0 < α < 1 , Dα denotes the conformable time fractional derivative, A :

D(A) ⊂ X → X is a non-densely defined linear operator i.e. D(A) ̸= X and

satisfying Hille - Yosida condition. B is a bounded linear operator from the Hilbert

space U to X with the control function u ∈ L2([0, a], U).

Non-local initial conditions model various physical situations better than usual

initial conditions. For more applications of non-local conditions one may refer [5].

Fractional derivatives are used in place of the classical derivatives to incorporate

memory properties inherent in many systems. For more details see [1, 2, 3, 4, 6] .

Oflate Khalil et al.[9] introduced the concept of a new fractional derivative called

conformable fractional derivative. The new definition is compatible with classical

derivative. Its many applications arise in mechanics, electronics, anomalous diffusion

etc. The novel definition extends the usual limit definition of classical derivative .

For more details see[5, 9].

Fractional derivatives defined as integrals as in Caputo or Riemann derivatives,

contradict the notion of locality of classical derivatives. As early as 17th century,

the concept of derivative is local, contrary to globality of fractional derivatives which

are defined in terms of integrals. Fractional derivatives in terms of integrals have

therefore being claimed as not derivatives in the strict sense. Derivatives represent

instances, particular magnitudes rather than intervals. Fractional models are one

particular set of models illustrating fractional behaviours.

Generally A is densely defined operator on a associated Banach space. However,

various real world situations are better depicted by non-dense operators. As an

example one can see that in a heat equation with Dirichlet condition on [0, 1] if

A = ∂2

∂2x
on C([0, 1];R) with supremum norm over the domain

D(A) = {u ∈ C2([0, 1];R) : u(0) = u(1) = 0}

is not dense in C([0, 1];R). The main objective of this paper is to fill these gap in the

study of controllability of conformable fractional control systems with nondensely

defined operator, deviated argument and nonlocal condition.

2. Preliminaries

Conformable fractional derivative of order α of a function y at t > 0 is defined

by

dαy(t)

dtα
= lim

ϵ→0

y(t+ ϵt1−α)− y(t)

ϵ
.

Conformable fractional integral of order α of a function y is defined as

Iαy(t) =

∫ t

0

sα−1y(s)ds.
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If y is a continuous function in the domain of Iα, we have

dα(Iαy(t))

dtα
= y(t).

If y is differentiable, we have

Iα
dαy(t)

dtα
(t) = y(t)− y(0)

Hypothesis (H0) : [9] The non-dense operator A : D(A) ⊂ X → X satisfies

Hille-Yosida condition i.e. ∃ M ≥ 0, w ∈ R, (w,∞) ⊂ ρ(A) such that

sup{(λ− w)n∥R(λ,A)n∥, n ∈ N, λ > w} ≤ M,

where R(λ,A) = (λI − A)−1.

When the Hille-Yosida condition is satisfied the non-dense operator A generates a

non-degenerate, locally Lipschitz continuous integrated semigroup

Let us define A0 on D(A0) ⊂ D(A) as

A0x = Ax,

and

D(A0) = {x ∈ D(A) : Ax ∈ D(A)}.
Then A0 generates a family {T (t)}t≥0 of C0 semigroup on D(A).

Let

C([0, a];D(A)) = {x : [0, a] → D(A) : x is continuous on [0, a]},
CL([0, a];D(A)) = {x : [0, a] → C([0, a], D(A)) : ∥x(t)− x(s)∥ ≤ L|t− s|}.

Clearly CL([0, a];D(A)) is a Banach space,where ∥x∥a = supt∈[0,a] ∥x(t)∥. Also let

Uc denote the space of all continuous functions from [0, a] to U. Then the product

space CL([0, a];D(A))× Uc is a Banach space with norm defined as

∥(., .)∥CL([0,a];D(A))×Uc
= ∥.∥CL([0,a];D(A)) + ∥.∥Uc

Let us define the controllability operator

Gt
r =

∫ t

r

sq−1[T (
tα

α
− sα

α
)B][T (

tα

α
− sα

α
)B]∗ds,

0 ≤ r ≤ t ≤ a. Now consider the following hypotheses:

(H1) The function f : [0, a]×CL([0, a];X)× Uad → CL([0, a];X) is a continuous

function such that ∀t ∈ [0, a], x, y ∈ CL([0, a];D(A)), u, w ∈ Uad

∥f(t, x, u)− f(t, y, w)∥a ≤ Lf [∥x− y∥a + ∥u− w∥a],

where Lf ≥ 0

(H2) ∃ Lb > 0 such that ∀t ∈ [0, a] ∥c(x(t), t)− c(y(t), t)∥ ≤ Lc∥x(t)− y(t)∥.
(H3) ∃ LT > 0 such that ∥T (t)∥ ≤ LT ∀ t ∈ [0, a].

(H4) ∃ Lg > 0 such that ∀t ∈ [0, a] ∥g(x(t))− g(y(t))∥ ≤ Lg∥x(t)− y(t)∥.
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(H5) (Ga
0) is coercive, which implies that ∃ µ > 0 such that ⟨Ga

0x, x⟩ ≥ µ∥x∥2,
hence (Ga

0)
−1 exists and ∥(Ga

0)
−1∥ ≤ 1

µ

Definition 1. The system (1) is said to be controllable on the interval [0, a] if

for every initial function x(0) ∈ D(A) and xa ∈ D(A) ∃ a control u ∈ L2([0, T ];U)

such that the integral solution x(.) of (1) satisfies x(a) = xa.

3. Main Result

In this section existence and uniqueness of the mild solution and exact control-

lability of the control system is established. Then the continuous dependence of the

integral solution is also studied.

Definition 2. A function x(t) ∈ CL([0, a];D(A)) is called a mild solution of

(1) if it satisfies the integral equation

x(t) = T (
tα

α
)(x0 + g(x)) +

∫ t

0

sα−1T (
tα

α
− sα

α
)

× (f(s, x(c(x(s), s)), u(s)) +Bu(s))ds, ∀t ∈ [0, a]. (2)

Lemma 3.1. [9] Assuming that X and U are Hilbert spaces and A0 is an infin-

itesimal generator of C0 semigroup and B is a bounded linear operator from X to U

then we have

∥Gt
0∥ ≤ ∥Ga

0∥, 0 ≤ t ≤ a

Proof. It is clear that Gt
0 = (Gt

0)
∗ and ∀ x ∈ X, ⟨Gt

0x, x⟩ ≥ 0. Also ∥Gt
0∥ =

sup∥x∥≤1 |⟨Gt
0x, x⟩|. So,

⟨Ga
0x, x⟩ = ⟨

∫ a

0

sα−1[T (
aα

α
− sα

α
)B][T (

aα

α
− sα

α
)B]∗dsx, x⟩

= ⟨
∫ t

0

sα−1[T (
aα

α
− sα

α
)B][T (

aα

α
− sα

α
)B]∗dsx, x⟩

+ ⟨
∫ a

t

sα−1[T (
aα

α
− sα

α
)B][T (

aα

α
− sα

α
)B]∗dsx, x⟩

= ⟨Gt
0x, x⟩+ ⟨

∫ a

t

sα−1[T (
aα

α
− sα

α
)B][T (

aα

α
− sα

α
)B]∗dsx, x⟩

(3)

Now,

⟨
∫ a

t

sq−1[T (
aα

α
− sα

α
)B][T (

aα

α
− sα

α
)B]∗dsx, x⟩

=

∫ a

t

sα−1⟨[T (a
α

α
− sα

α
)B]∗x, [T (

aα

α
− sα

α
)B]∗x⟩ds

=

∫ a

t

sα−1∥[T (a
α

α
− sα

α
)B]∗x∥ds ≥ 0 (4)
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Therefore ⟨Gt
0x, x⟩ ≤ ⟨Ga

0x, x⟩, implies ∥Gt
0∥ ≤ ∥Ga

0∥, 0 ≤ t ≤ a □

Let p ∈ D(A) then under hypothesis (H5) define the control function as

U(t) = B∗T ∗(
aα

α
− tα

α
)[Ωa

0]
−1(p− T (a

α

α
)(x0 + g(x))

−
∫ a

0

sα−1T (
aα

α
− sα

α
)f(s, x(c(x(s), s)), u(s))ds). (5)

Let

X(t) = T (
tα

α
)(x0 + g(x)) +Gt

0T
∗(
aα

α
− tα

α
)[GT

0 ]
−1(p− T (

aα

α
)(x0 + g(x)))

− Gt
0T

∗(
aα

α
− tα

α
)[GT

0 ]
−1

×
∫ a

0

sα−1T (
aα

α
− sα

α
)f(s, x(c(x(s), s)), u(s))ds

+

∫ t

0

sα−1T (
tα

α
− sα

α
)f(s, x(c(x(s), s)), u(s))ds. (6)

Lemma 3.2. By hypotheses (H1)−(H5), the operator K : CL(0, a;D(A))×Uc →
CL(0, a;D(A)) × Uc defined as K(x, u)(t) = (X(t), U(t)), 0 ≤ t ≤ a satisfies the

estimate

∥K(y, w)−K(x, u)∥ ≤ aα

α
[(1 +

∥Ga
0∥
µ

LT )LTLf + 1](∥y − x∥+ ∥u− w∥)

whenever LLb ≤ 1, LTLg ≤ Lf
aα

α
and LTLg + LgL

2
T
GT

0

µ
≤ aα

α
.

Proof. Let (y, w), (x, u) ∈ CL([0, a];D(A)) × Uc, with K(y, w) = (Y,W ),

K(x, u) = (X,U). Then

∥K(y, w)−K(x, u)∥ = ∥Y −X∥ CL([0,a];D(A)) + ∥W − U∥Uc .
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Now let us estimate

∥Y −X∥ = sup
t∈[0,a]

∥Gt
0T

∗(
aα

α
− tα

α
)[Ωa

0]
−1[×

∫ a

0

sα−1T (
aα

α
− tα

α
)

× (f(s, y(b(y(s), s)), w(s))− f(s, x(c(x(s), s)), u(s)))ds]

+

∫ t

0

sα−1T (
tα

α
− sα

α
)(f(s, y(c(y(s), s)), w(s))

− f(s, x(c(x(s), s)), u(s)))ds+ T (
tα

α
)(g(y)− g(x))

+ Gt
0T

∗(
aα

α
− tα

α
)[Ga

0]
−1(T (

tα

α
)(g(x)− g(y)))∥

≤ sup
t∈[0,a]

(LT + L2
T∥Gt

0∥∥Ga
0∥−1)

× [

∫ a

0

sα−1∥(f(s, y(c(y(s), s)), w(s))

− f(s, x(c(x(s), s)), u(s)))∥ds]

+ LTLg(∥y(s)− x(s)∥) + ∥Ga∥
µ

L2
TLg(∥x(s)− y(s)∥)

≤ (LT + L2
T

∥Ga
0∥
µ

)Lf

∫ a

0

sα−1(LLc∥x(s)− y(s)∥+ ∥w − u∥)ds

+ LTLg(∥y − z∥) + ∥Ga
0∥
µ

L2
TLg∥x− y∥

≤ [(1 +
∥Ga

0∥
µ

LT )LTLf
aα

α
(LLc) + LTLg + L2

TLg
∥Ga

0∥
µ

]∥x− y∥

+ [(1 +
∥Ga

0∥
µ

LT )LTLf
aα

α
]∥w − u∥

= [
aα

α
(1 +

∥Ga
0∥
µ

LT )LTLf (LLc) + LTLg + LgL
2
T

∥Ga
0∥
µ

]∥x− y∥

+ [
aα

α
(1 +

∥Ga
0∥
µ

LT )LTLf∥w − u∥ (7)

since LLc < 1 and LTLg + LgL
2
T
∥Ga

0∥
µ

≤ aα

α

≤ [
aα

α
(1 +

∥Ga
0∥
µ

LT )LTLf +
aα

α
]∥y − x∥

+ [
aα

α
(1 +

∥Ga
0∥
µ

LT )LTLf ]∥u− w∥+ aα

α
]∥u− w∥

=
aα

α
[(1 +

∥Ga
0∥
µ

LT )LTLf + 1](∥x− y∥+ ∥u− w∥)

=
aα

α
M0(∥x− y∥+ ∥u− w∥) (8)
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where M0 = [(1 +
∥Ga

0∥
µ

LT )LTLf + 1]. Similarly,

∥U −W∥ = sup
t∈[0,a]

∥B∗T ∗(
aα

α
− tα

α
)[Ga

0]
−1[{

∫ a

0

sα−1(f(s, y(c(y(s), s)), w(s))

− f((s, x(c(x(s), s)), u(s)))ds}+ T ∗(
aα

α
)(g(y)− g(x))]∥

≤ LcLT

µ
[

∫ a

0

sα−1∥(f(s, y(c(y(s), s)), w(s))

− f((s, x(c(x(s), s)), u(s)))∥ds+ LTLg∥y − x∥]

≤ LcLT

µ
[
aα

α
Lf (LLc∥y − x∥+ ∥w − u∥) + LTLg∥y − x∥]

≤ LcLT

µ
[
aα

α
Lf (∥y − x∥+ ∥w − u∥) + aα

α
Lf∥y − x∥]

≤ LcLT

µ
[
aα

α
Lf (∥y − x∥+ ∥w − u∥)

+
aα

α
Lf (∥y − x∥+ ∥u− w∥)]

≤ LcLT

µ
[2
aα

α
Lf (∥y − x∥+ ∥w − u∥)] (9)

Therefore from (8) and (9) we get

∥K(x, u) − K(y, w)∥ ≤
aα

α
[(M0 +

LcLT

µ
(2Lf )](∥x− y∥+ ∥u− w∥) (10)

□

Lemma 3.3. Assuming that lemma(3.2) holds, the operator K defined as K(x, u)(t) =

(X(t), U(t)), 0 ≤ t ≤ a maps CL(0, a;D(A))× Uc into CL(0, a;D(A))× Uc and has

a unique fixed point (x, u) ∈ CL(0, a;D(A))× Uc if
aα

α
[M0 +

LbLT

µ
(2Lf )] < 1

Proof. Since the product space CL([0, a];D(A))×Uc is a Banach space endowed

with the norm

∥(., .)∥CL([0,a];D(A))×Uc
= ∥.∥CL([0,a];D(A)) + ∥.∥Uc

and from lemma (3.2) we get

∥K(x, u)−K(y, w)∥ ≤ aα

α
[M0 +

LbLT

µ
(2Lf )](∥x− y∥+ ∥u− w∥),

so clearly the operator K is a contraction mapping if aα

α
[M0 + LbLT

µ
(2Lf )] < 1.

Therefore it has a unique fixed point (x, u) ∈ CL(0, a;D(A))× Uc. □

Theorem 3.4. Assuming that lemma(3.3) holds, the non-local conformable frac-

tional differential system (1) is exactly controllable on [0, a].
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Proof. To prove the system (1) is exactly controllable on [0, a], we need to show

that for any p ∈ D(A), ∃u ∈ Uc so that p = x(T ). From (5), we get

u(t) = B∗T ∗(
aα

α
− tα

α
)[Ωa

0]
−1[p− T (

aα

α
)(x0 + g(x))

−
∫ a

0

sα−1T (
aα

α
− sα

α
)f(s, x(c(x(s), s)), u(s))ds]. (11)

let us substitute (11) in (2), so that,

x(t) = T (
tα

α
)(x0 + g(x)) +

∫ t

0

sα−1T (
tα

α
− sα

α
)BB∗T ∗(

tα

α
− sα

α
)

× T ∗(
aα

α
− tα

α
)[Ωa

0]
−1{p− T (

aα

α
)(x0 + g(x(r)))}ds

−
∫ t

0

sα−1T (
tα

α
− sα

α
)BB∗T ∗(

tα

α
− sα

α
)T ∗(

aα

α
− tα

α
)[Ωa

0]
−1

× (

∫ a

0

rα−1T (
aα

α
− rα

α
)f(r, x(c(x(r), r)), u(r))dr)ds

+

∫ t

0

sα−1T (
tα

α
− sα

α
)f(s, x(c(x(s), s)), u(s))ds.

= T (
tα

α
)(x0 + g(x)) +

∫ t

0

sα−1T (
tα

α
− sα

α
)f(s, x(c(x(s), s)), u(s))ds

+ Ωt
0T

∗(
aα

α
− tα

α
)[Ωa

0]
−1{p− T (

aα

α
)(x0 + g(x(r)))}

−
∫ a

0

[

∫ t

0

sα−1T (
tα

α
− sα

α
)BB∗T ∗(

tα

α
− sα

α
)T ∗(

aα

α
− tα

α
)[Ωa

0]
−1ds]

× T (
aα

α
− rα

α
)f(r, x(c(x(r), r)), u(r))rα−1dr

= T (
tα

α
)(x0 + g(x)) +

∫ t

0

sα−1T (
tα

α
− sα

α
)f(s, x(c(x(s), s)), u(s))ds

+ Ωt
0T

∗(
aα

α
− tα

α
)[Ωa

0]
−1{p− T (

aα

α
)(x0 + g(x(r)))}

−
∫ a

0

Ωt
0T

∗(
aα

α
− tα

α
)[Ωa

0]
−1rα−1T (

aα

α
− tα

α
)f(r, x(c(x(r), r)), u(r))dr

(12)
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Now let us take t = a, then

x(a) = T (
aα

α
)(x0 + g(x)) +

∫ a

0

sα−1T (
aα

α
− sα

α
)f(s, x(c(x(s), s)), u(s))ds

+ p− T (
aα

α
)(x0 + g(x))

−
∫ a

0

rα−1T (
aα

α
− rα

α
)f(r, x(c(x(r), r)), u(r))dr

= p. (13)

This implies that ∀p ∈ D(A), ∃u ∈ Uc such that it transfers x(0) to p in time a such

that p = x(a). Hence the system (1) is exactly controllable. □

3.1. Continuous Dependence. Now continuous dependence is studied to un-

derstand the effect of the non-local condition on the stability of the mild solution.

Theorem 3.5. Let x, y be the solutions with corresponding initial nonlocal con-

ditions associated to x0, x1 respectively. Let u0, u1 ∈ Uc. Assuming the hypotheses

(H0−H5) hold, and if (LTLg + LTLf
aα

α
(LLb)) < 1 with

x(t) = T (
tα

α
)(x0 + g(x)) +

∫ t

0

sα−1T (
tα

α
− sα

α
)

× (f(s, x(c(x(s), s)), u0(s)) +Bu0(s))ds, ∀t ∈ [0, a]. (14)

and

y(t) = T (
tα

α
)(x1 + g(y)) +

∫ t

0

sα−1T (
tα

α
− sα

α
)

× (f(s, y(c(y(s), s)), u1(s)) +Bu1(s))ds, ∀t ∈ [0, a]. (15)

Then ∃ constants C0, C1 > 0 such that ∥x− y∥CL([0,a];D(A)) ≤ C0|x0 − x1|+C1∥u0 −
u1∥Uc

Proof.

∥x− y∥ ≤ ∥T (t
α

α
)∥|x0 − x1|+ ∥T (t

α

α
)∥∥g(x)− g(y)∥

+ ∥
∫ t

0

sα−1T (
tα

α
− sα

α
)(Bu0(s)−Bu1(s))ds∥

+ ∥
∫ t

0

sα−1T (
tα

α
− sα

α
)(f((s, x(c(x(s), s)), u0(s))

− f((s, y(c(y(s), s)), u1(s)))ds∥

≤ LT |x0 − x1|+ LTLg∥x− y∥+ LTLf
aα

α
(LLc)∥x− y∥

+ (LTLf
aα

α
)∥u0 − u1∥+ ∥B∥a

α

α
∥u0 − u1∥ (16)
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This implies

∥x− y∥ ≤ LT

1− LTLg − LTLf
aα

α
(LLc)

|x0 − x1|

+
[(LTLf + ∥B∥)aα

α
]

1− LTLg − LTLf
aα

α
(LLc)

∥u0 − u1∥

= C0∥x0 − x1|+ C1∥u0 − u1∥ (17)

where C0 =
LT

1−LTLg−LTLf
aα

α
(LLc)

and C1 =
[(LTLf+∥B∥)a

α

α
)]

1−LTLg−LTLf
aα

α
(LLb)

. Hence proved. □

4. Example

Example 4.1. As an example of a conformable fractional control system one

may consider the system

Dαx(y, t) = Ax(y, t) + u(t)

+

∫ x

0

K(s, x)(x(y, ∥x(y, t)∥) + u(t))ds,

0 < t ≤ a, y ∈ (0, π)

x(0, t) = x(π, t) = 0

x(y, 0) = x0(y) + g(x(y, t)), y ∈ (0, π) (18)

With operator A satisfying Hille-Yosida condition and the hypotheses (H1)- (H2)

on being satisfied, it can be shown that results in Theorem (3.4)holds.

Example 4.2. This example is studied as a particular case of the class of ex-

amples as in (4.1).

D1/2x(y, t) =
∂2

∂y2
x(y, t) + u(t)

+

∫ x

0

K(s, x)(x(y, ∥x(y, t)∥) + u(t))ds,

0 < t ≤ a, y ∈ (0, π)

x(0, t) = x(π, t) = 0

x(y, 0) = x0(y) + g(x(y, t)), y ∈ (0, π) (19)

Let X = C([0, π],R) and Ax := ∂2

∂y2
on the domain

D(A) = {x(.) ∈ X :
∂2

∂y2
∈ X, x(0) = x(π) = 0}.

Clearly D(A) ̸= X. Hence A is nondensely defined on X. Here ρ(A) ⊇ (0,∞),

∥λI − A)−1∥ ≤ 1
λ
, λ > 0, so A generates C0 semigroup {T (t)} on D(A). Let

CL([0, a], D(A)) = {x : [0, a] → C([0, a], D(A)) : ∥x(t)− x(s)∥ ≤ L|t− s|}.



EXACT CONTROLLABILITY AND CONTINUOUS DEPENDENCE OF SOLUTION ... 45

Set x(t) := x(y, t). Define f : [0, a]× CL([0, a], D(A))× U → X as

f(t, x(b(x(t), t)), u(t)) =

∫ x

0

K(s, x)(x(y, ∥x(y, t)∥) + u(t))ds,

as

x(t) := x(y, t)

So

x(y, ∥x(y, t)∥) = x(∥x(y, t)∥) = x(b(x(t), t)))

where b(x(t), t) = ∥x(y, t)∥ and Bu(t) = u(t). Hypotheses (H1) and (H2) are verified

as below

∥f(t, x(b(x(t), t)), u(t)) − f(t, z(b(z(t), t)), v(t))∥

≤
∫ x

0

K(s, x)∥x(∥x(y, t)∥)− z(∥z(y, t)∥)∥ds

+

∫ x

0

K(s, x)(∥u(t)− v(t)∥)ds

≤
∫ x

0

K(s, x)(∥x(t)∥ − ∥z(t)∥)ds

+

∫ x

0

K(s, x)∥u(t)− v(t)∥ds

≤
∫ x

0

K(s, x)(∥x(t)− z(t)∥)ds

+

∫ x

0

K(s, x)∥u(t)− v(t)∥ds

So the hypotheses (H1) and (H2) are satisfied. Hence the (19) can be reduced to

the form

Dαx(t) = Ax(t) +Bu(t) + f(t, x(b(x(t), t)), u(t)), 0 < t ≤ a,

x(0) = x0 + g(x) (20)

By Theorem(3.4) the system (19) is therefore exactly controllable on [0, a].

5. Conclusion

Exact controllability and continuous dependence mild solution of a class of con-

formable fractional control system of order α ∈ (0, 1] is established. Generally the

authors use a densely defined operator A. But in this paper A is belongs to broader

class of operators called non-dense operators. Moreover non-local initial conditions

and deviated argument is used to incorporate the properties of the control system

that are not captured by usual initial conditions. The control operator is included

in the nonlinear term as well to study nonlinear control systems. Eventually, an

example is given to illustrate the main result.
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