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Notes on the stability of multimixed

additive-quartic mappings

Yousef Ebrahimdoost

Abstract. In this article, we prove the Hyers–Ulam stability of multimixed

additive-quartic functional equations in the setting of Banach spaces by apply-

ing a fixed point method and moreover we generalize some known results.

1. Introduction

In 1940, Ulam [25] gave a wide-ranging discussion in which he explored a variety

of major unresolved problems. One of these was the subject of the stability of

homomorphisms. Recall that an equation is stable in some class of functions if any

function from that class, satisfying the equation approximately (in some sense), is

near (in some way) to an exact solution of the equation. In 1941, Hyers [16] solved

the Ulam problem for Banach spaces for the first time. Then, Th. M. Rassias [24]

was able to expand Hyers’ conclusion. A generalization of the Rassias theorem was

obtained by Găvruţa [15] by replacing the unbounded Cauchy difference by a general

control function in the spirit of Rassias approach. The concept Hyers–Ulam stability

derives from these historical contexts; see [22] and [23] and references therein.

Let V be a commutative group, W be a linear space over rational numbers, and

n be an integer with n ≥ 2. A mapping f : V n −→ W is called multiadditive if it

satisfies the Cauchy’s functional equation A(x+ y) = A(x) +A(y) in each variable.

More information about the structure of multi-additive mappings are available for

instance in [12] and [17]. Moreover, f is said to be multiquartic if it satisfies one of
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the equations

Q(x+ 2y) +Q(x− 2y) = 4Q(x+ y) + 4Q(x− y)− 6Q(x) + 24Q(y) (1)

or

Q(2x+ y) +Q(2x− y) = 4Q(x+ y) + 4Q(x− y) + 24Q(x)− 6Q(y), (2)

in each variable. For more details about quartic, multiquartic functional equation

and their stabilities see [1, 7, 18, 19, 21].

In the last two decades, the stability problem for several variables mappings

such as multiadditive, multiquadratic, multicubic and multiquartic mappings and

functional equations by applying direct and fixed point methods have been studied

by a number of authors which are available for example in [2], [3], [8], [10], [11],

[13], [20], and [26].

In [14], Eshaghi Gordji introduced and obtained the general solution of the fol-

lowing mixed type additive and quartic functional equation

f(2x+ y) + f(2x− y)

= 4[(f(x+ y) + f(x− y)]− 3

7
(f(2y)− 2f(y)) + 2f(2x)− 8f(x). (3)

A alternative form of mixed type additive and quartic functional equation has

been introduced by Bodaghi in [5] as follows:

f(x+ 2y)− 4f(x+ y)− 4f(x− y) + f(x− 2y) =
12

7
(f(2y)− 2f(y))− 6f(x). (4)

It is easily verified that the function f(x) = αx4 + βx is a solution of the equations

(3) and (4); the generalized version of equation (4) can be found in [4]. Recently,

motivated by equation (4), Bodaghi et al. [6] defined the multimixed additive-

quartic mappings and characterized the general form of such mappings as a equation.

In other words, they unified the system of n equations defining the multi-mixed

additive-quartic mappings to a single equation.

In this paper, we prove the Hyers–Ulam stability for the multi-mixed additive-

quartic mappings in the setting of Banach spaces by applying a fixed point method

[9]. In other word, we generalize some results in [6]. As a consequence, we show that

every multimixed additive-quartic mapping is δ-stable for a small positive number

δ.

2. Main Results

Throughout this section, N stands for the set of all positive integers, N0 :=

N ∪ {0},R+ := [0,∞), n ∈ N. Moreover, V and W are vector spaces over the

rational numbersQ, n ∈ N and xni = (xi1, xi2, . . . , xin) ∈ V n, where i ∈ {1, 2}. We

shall denote xni by xi or simply x if there is no risk of ambiguity.
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Definition 2.1. [6] A mapping f : V n −→ W is called n-multimixed additive-

quartic or briefly multimixed additive-quartic if f satisfies mixed additive-quartic

equation (4) in each variable.

Let n ∈ N with n ≥ 2 and xni = (xi1, xi2, . . . , xin) ∈ V n, where i ∈ {1, 2}. For

x1, x2 ∈ V n and pi, q ∈ N0 with 0 ≤ pi, q ≤ n, put

M = {Mn = (M1, . . . ,Mn)| Mj ∈ {x1j ± 2x2j, 2x2j}, j ∈ {1, . . . , n}} ,

and

N = {Nn = (N1, . . . , Nn)| Nj ∈ {x1j ± x2j, x1j, x2j}} .
Consider the subsets Mn

q and N n
(p1,p2)

of M and N , respectively, as follows:

Mn
q := {Mn ∈ M| Card{Mj : Mj = 2x2j} = q} .

N n
(p1,p2)

:= {Nn ∈ N| Card{Nj : Nj = xij} = pi (i ∈ {1, 2})} ,
where j ∈ {1, . . . , n}. From now on, for the multimixed additive-quartic mappings,

we use the following notations:

f
(
Mn

q

)
:=

∑
Mn∈Mn

q

f(Mn). (5)

f
(
N n

(p1,p2)

)
:=

∑
Nn∈Nn

(p1,p2)

f(Nn). (6)

The following result was proved in [6].

Proposition 2.1. If a mapping f : V n −→ W is multimixed additive-quartic, it

satisfies the equation

n∑
q=0

(
−12

7

)q

f
(
Mn

q

)
=

n∑
p1=0

n−p1∑
p2=0

4n−p1−p2(−6)p1
(
−24

7

)p2

f
(
N n

(p1,p2)

)
, (7)

where f
(
Mn

q

)
and f

(
N n

(p1,p2)

)
are defined in (5) and (6), respectively.

In continuation, we prove some Hyers–Ulam stability results by a fixed point

method in the setting of Banach spaces. In what follows, we denote the set of all

mappings from E to F by FE. We remember the following theorem which is an

essential result in fixed point theory [10, Theorem 1]. This achievement is a key

tool in obtaining our aim in this section.

Theorem 2.2. Let the hypotheses

(H1) Y is a Banach space, E is a nonempty set, j ∈ N, g1, . . . , gj : E −→ E and

L1, . . . , Lj : E −→ R+,
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(H2) T : Y E −→ Y E is an operator satisfying the inequality

∥T λ(x)− T µ(x)∥ ≤
j∑

i=1

Li(x) ∥λ(gi(x))− µ(gi(x))∥ , λ, µ ∈ Y E, x ∈ E,

(H3) Λ : RE
+ −→ RE

+ is an operator defined through

Λδ(x) :=

j∑
i=1

Li(x)δ(gi(x)) δ ∈ RE
+, x ∈ E.

hold and a function θ : E −→ R+ and a mapping ϕ : E −→ Y fulfill the following

two conditions:

∥T ϕ(x)− ϕ(x)∥ ≤ θ(x), θ∗(x) :=
∞∑
l=0

Λlθ(x) <∞ (x ∈ E).

Then, there exists a unique fixed point ψ of T such that

∥ϕ(x)− ψ(x)∥ ≤ θ∗(x) (x ∈ E).

Moreover, ψ(x) = liml→∞ T lϕ(x) for all x ∈ E.

We say a mapping f : V n −→ W

(i) has zero condition if f(x) = 0 for any x ∈ V n with at least one component

which is equal to zero.

(ii) is odd in the jth variable if

f(z1, . . . , zj−1,−zj, zj+1, . . . , zn) = −f(z1, . . . , zj−1, zj, zj+1, . . . , zn).

(iii) is even in the jth variable if

f(z1, . . . , zj−1,−zj, zj+1, . . . , zn) = f(z1, . . . , zj−1, zj, zj+1, . . . , zn).

For the rest of this paper and for each mapping f : V n −→ W , we consider the

difference operator DAQf : V n × V n −→ W defined via

DAQf(x1, x2) :=
n∑

q=0

(
−12

7

)q

f
(
Mn

q

)
−

n∑
p1=0

n−p1∑
p2=0

4n−p1−p2(−6)p1
(
−24

7

)p2

f
(
N n

(p1,p2)

)
,

where f
(
Mn

q

)
and f

(
N n

(p1,p2)

)
are defined in (5) and (6), respectively. In the

sequel, all mappings f : V n −→ W are assumed that satisfy zero condition. With

this assumption, we have the next stability result for functional equation (7).

Theorem 2.3. Let β ∈ {−1, 1} be fixed, V be a linear space and W be a Banach

space. Suppose that ϕ : V n × V n −→ R+ is a mapping satisfying

lim
l→∞

(
1

2(4n−3k)β

)l

ϕ(2βlx1, 2
βlx2) = 0, (8)
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for all x1, x2 ∈ V n and

Φ(x) =:
7n

25n−2k × 3k
× 1

2(4n−3k)β−1
2

∞∑
l=0

(
1

2(4n−3k)β

)l

ϕ
(
0, 2βl+

β−1
2 x

)
<∞, (9)

for all x ∈ V n. Assume also f : V n −→ W is an odd mapping in each of some

k variables and is even in each of the other variables and moreover satisfying the

inequality

∥DAQf(x1, x2)∥ ⩽ ϕ(x1, x2), (10)

for all x1, x2 ∈ V n. Then, there exists a unique solution F : V n −→ W of (7) such

that

∥f(x)−F(x)∥ ≤ Φ(x), (11)

for all x ∈ V n.

Proof. Without loss of generality, we assume that f is odd in the k first of

variables. Replacing (x1, x2) by (0, x1) in (10) and applying the hypotheses, we

obtain ∥∥∥∥∥
(
−12

7

)k

Sf(2x)−
(
−24

7

)k

Tf(x)

∥∥∥∥∥ ≤ ϕ(0, x), (12)

for all x = x1 ∈ V n in which

S =
n−k∑
q=0

(
n− k

q

)(
−12

7

)q

2n−k−q (13)

and

T =
n−k∑
p=0

(
n− k

p

)(
−24

7

)p

4n−k−p × 2n−k−p. (14)

We have

S =
n−k∑
q=0

(
n− k

q

)(
−12

7

)q

2n−k−q =

(
−12

7
+ 2

)k

=

(
2

7

)k

and

T =
n−k∑
p=0

(
n− k

p

)(
−24

7

)p

4n−k−p × 2n−k−p =

(
−24

7
+ 8

)n−k

=

(
32

7

)n−k

.

By the relations above, (12) will be∥∥∥∥∥
(
−12

7

)k (
2

7

)n−k

f(2x)−
(
−24

7

)k (
32

7

)n−k

f(x)

∥∥∥∥∥ ≤ ϕ(0, x),
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and so ∥∥∥∥f(x)− 1

24n−3k
f(2x)

∥∥∥∥ ≤ 7n

3k × 25n−2k
ϕ(0, x). (15)

Set

θ(x) :=
7n

25n−2k × 3k
× 1

2(4n−3k)β−1
2

ϕ
(
0, 2

β−1
2 x

)
,

and

T θ(x) := 1

2(4n−3k)β
θ(2βx),

where θ ∈ W V n
. Then, relation (15) can be modified as

∥f(x)− T f(x)∥ ≤ θ(x) (x ∈ V n).

Define Λη(x) := 1
2(4n−3k)β η(2

βx) for all η ∈ RV n

+ . It is seen that Λ has the form (H3)

of Theorem 2.2 for which E = V n, g1(x) = 2βx and L1(x) =
1

2(4n−3k)β . Furthermore,

for each λ, µ ∈ W V n
, we get

∥T λ(x)− T µ(x)∥ =

∥∥∥∥ 1

2(4n−3k)β

[
λ(2βx)− µ(2βx)

]∥∥∥∥ ≤ L1(x) ∥λ(g1(x))− µ(g1(x))∥ .

The last relation shows that the hypothesis (H2) holds. By induction on l, one can

check that for any l ∈ N0, we have

Λlθ(x) : =

(
1

2(4n−3k)β

)l

θ(2βlx)

=
7n

25n−2k × 3k
× 1

2(4n−3k)β−1
2

(
1

2(4n−3k)β

)l

ϕ
(
0, 2βl+

β−1
2 x

)
. (16)

It follows from (9) and (16) that all assumptions of Theorem 2.2 are satisfied and

so there exists a unique mapping F : V n −→ W such that

F(x) = lim
l→∞

(T lf)(x) =
1

2(4n−3k)β
F(2βx) (x ∈ V n),

and moreover (11) is valid. Next, we show that

∥DAQ(T lf)(x1, x2)∥ ≤
(

1

2(4n−3k)β

)l

ϕ(2βlx1, 2
βlx2), (17)
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for all x1, x2 ∈ V n and l ∈ N0. We argue by induction on l. It is obvious that(17) is

true for l = 0 by (10). Assume that (17) holds for an l ∈ N0. Then

∥DAQ(T l+1f)(x1, x2)∥

=
∥∥∥ n∑

q=0

(
−12

7

)q

(T l+1f)
(
Mn

q

)
−

n∑
p1=0

n−p1∑
p2=0

4n−p1−p2(−6)p1
(
−24

7

)p2

(T l+1f)
(
N n

(p1,p2)

) ∥∥∥
=

1

2(4n−3k)β

∥∥∥ n∑
q=0

(
−12

7

)q

(T lf)
(
2βMn

q

)
−

n∑
p1=0

n−p1∑
p2=0

4n−p1−p2(−6)p1
(
−24

7

)p2

(T lf)
(
2βN n

(p1,p2)

) ∥∥∥
=

1

2(4n−3k)β

∥∥DAQ(T lf)(2βx1, 2
βx2))

∥∥ ≤
(

1

2(4n−3k)β

)l+1

ϕ(2β(l+1)x1, 2
β(l+1)x2),

for all x1, x2 ∈ V n. Letting l → ∞ in (17) and applying (8), we arrive atDAQF(x1, x2) =

0 for all x1, x2 ∈ V n. This means that the mapping F satisfies (7). Finally, assume

that F : V n −→ W is another mapping satisfying equation (7) and inequality (11),

and fix x ∈ V n, j ∈ N. Then, by [6, Lemma 8] and (9), we have

∥F(x)− F(x)∥

=

∥∥∥∥∥
(

1

24n−3k

)j

F(2jx)−
(

1

24n−3k

)j

F(2jx)

∥∥∥∥∥
≤

(
1

24n−3k

)j

(∥F(2jx)− f(2jx)∥+ ∥F(2jx)− f(2jx)∥)

≤ 2

(
1

24n−3k

)j

Φ(2jx)

≤ 2
7n

25n−2k × 3k
× 1

2(4n−3k)β−1
2

∞∑
l=j

(
1

2(4n−3k)β

)l

ϕ
(
0, 2βl+

β−1
2 x

)
.

Consequently, letting j → ∞ and using the fact that series (9) is convergent for all

x ∈ V n, we obtain F(x) = F(x) for all x ∈ V n. This completes the proof. □

Putting k = 0, n in Theorem 2.3, we reach to Theorems 13 and 14 from [6], and

thus this theorem generalizes main theorems of [6].

Here and subsequently, it is assumed that V is a normed space and W is a

Banach space. In the following corollary, we show that the multimixed additive-

quartic mappings are stable if (7) is controlled by the powers of norms of variables.

Corollary 2.4. Given α ∈ R with α ̸= 4n− 3k. Suppose that f : V n −→ W is

an odd mapping in each of some k variables and is even in each of the other variables
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and moreover satisfying the inequality

∥DAQf(x1, x2)∥ ≤
2∑

i=1

n∑
j=1

∥xij∥α,

for all x1, x2 ∈ V n. Then, there exists a unique solution F : V n −→ W of (7) such

that

∥f(x)−F(x)∥ ≤ 7n

2n+k × 3k|24n−3k − 2α|

n∑
j=1

∥x1j∥α

for all x = x1 ∈ V n.

The next corollary is a direct consequence of Theorems 2.3 when the functional

equation (7) is controlled by a small positive number δ.

Corollary 2.5. Let δ > 0. Suppose that f : V n −→ W is an odd mapping in

each of some k variables and is even in each of the other variables and moreover

satisfying the inequality

∥DAQf(x1, x2)∥ ≤ δ,

for all x1, x2 ∈ V n. Then, there exists a unique solution F : V n −→ W of (7) such

that

∥f(x)−F(x)∥ ≤ 7n

2n+k × 3k(24n−3k − 1)
δ

for all x = x1 ∈ V n.

Proof. Letting the constant function ϕ(x1, x2) = δ for all x1, x2 ∈ V n, and

using Theorem 2.3 in the case β = 1, one can obtain the desired result. □

Note that Corollaries 15 and 16 of [6] are some special case of Corollary 2.5 in

the cases = 0 and k = n.
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[10] J. Brzdȩk and J. Chudziak and Zs. Palés, A fixed point approach to the stability of functional

equations in non-Archimedean metric spaces, Nonlinear Anal., 74(2011), 6728-6732.
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