تعداد نشریات | 418 |
تعداد شمارهها | 9,995 |
تعداد مقالات | 83,546 |
تعداد مشاهده مقاله | 77,355,196 |
تعداد دریافت فایل اصل مقاله | 54,388,841 |
Quantum dots: Application in medical science | ||
International Journal of Nano Dimension | ||
مقاله 2، دوره 14، شماره 1، فروردین 2023، صفحه 29-40 اصل مقاله (643.4 K) | ||
نوع مقاله: Review | ||
شناسه دیجیتال (DOI): 10.22034/ijnd.2022.1963190.2160 | ||
نویسندگان | ||
Sahajkumar Anilkumar Gandhi* 1؛ Pinkesh Gopalbhai Sutariya2؛ Heni Nipulkumar Soni2؛ Divyesh Yashvantbhai Chaudhari1 | ||
1Department of Physics, Bhartiya Vidya Bhavans Shri Ishvarlal L. Pandya Arts-Sci. & J. Shah Comm. College, Dakor 388 225, Gujarat, India. | ||
2Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat, India. | ||
چکیده | ||
Quantum Dots are a group of semiconductors nanomaterials whose size is about less than 10 nm exhibiting unique optical and electric properties which impart different advantages in terms of wide and continuous absorption spectra, narrow emission spectra, high quantum yield, long fluorescence lifetimes, and high photostability. Based on the unique properties of quantum dots have a variety of applications. This review informs about quantum dots structure, properties of quantum dots, surface modification of quantum dots for biocompatible, synthesis process and its important application like labeling cell structure and FRET (Fluorescence resonance energy transfer). Quantum dots as bio-sensors, bio-marker, and bio-imagine are used in many therapeutic systems. Several attractive applications have been observed with supramolecular compounds: Calix-4 arenes derivatives with quantum dots in the field of medical science. | ||
کلیدواژهها | ||
Bioimaging؛ Calix-4 Arenes؛ Optical Properties؛ Quantum Dots؛ Medical Applications؛ Synthesis Method | ||
مراجع | ||
[1] Ekimov A. I., Onushchenko A. A., (1982), Quantum size effect in the optical-spectra of semiconductor micro-crystals. Soviet Phys. Semiconduc. 16: 775-778.
[2] Murray C. B., Norris D. J., Bawendi M. G., (1993), Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115: 8706-8715.
[3] Woggon U., (1997), Optical properties of semiconductor quantum dots. Springer Book. 136: 103-157.
[4] Zhang Z. Z., Chang K., Peeters F. M., (2008), Tuning of energy levels and optical properties of graphene quantum dots. Phys. Rev. B. 77: 235411-235418.
[5] Gao X., Dave Sh. R., (2007), QDs for cancer molecular imaging. In bio-applications of nanoparticles; Springer-Verlag Berlin: Berlin. 620: 57-73.
[6] Liu H. C., Song C. Y., Thorpe A. J., Cao J. C., (2004), Terahertz quantum-well photodetector. Appl. Phys. Lett. 84: 4068-4070.
[7] Shrekenhamer D., Rout S., Strikwerda A. C., Bingham C., Averitt R. D., Sonkusale S., Padilla W. J., (2011), High speed terahertz modulation from metamaterials with embedded high electron mobility transistors. Optics express. 19: 9968-9975.
[8] Chu Z., Zhou Y., Zhou J., Chen P., Li Z., Lu W., Chen X., (2021), Quantum well infrared detectors enhanced by faceted plasmonic cavities. Infra. Phys. Technol. 116: 103746-103750.
[9] Ridene S., (2017), Novel T-shaped GaSb/InAsN quantum wire for mid-infrared laser applications. Phys. Lett. A. 381: 3324-3331.
[10] Meehan X. Y., Kathleen M., Guido L., Lu G., Wyatt Ch., Love N., (2005), Synthesis and characterization of silica coated CdSe/CdS core/Shell quantum dots. PhD Thesis.
[11] Shoujun Zhu., Yubin S., Joy W., Hao W., Zhang Y., Ning Y., Yang B., (2017), Photoluminescence mechanism in graphene QDs: Quantum confinement effect and surface/edge state. Nano Today. 13: 10-14.
[12] Katsaba A. V., Ambrozevich S. A., Vitukhnovsky A. G., Fedyanin V. V., Lobanov A. N., Krivobok V. S., Vasiliev R. B., Samatov I. G., (2013), Surface states effect on photoluminescence of CdS colloidal nanocrystals. J. Appl. Phys. 113: 184306-184311.
[13] Huang L., Yang J., Wang X., Han J., Hana H., Li C., (2013), Effects of surface modification on photocatalytic activity of CdS nanocrystals studied by photoluminescence spectroscopy. Phys. Chem. Chem. Phys. 15: 553-560.
[14] Kobayashi Y., Nishimura T., Yamaguchi H., Tamai N., (2011), Effect of surface defects on auger recombination in colloidal CdS quantum dots. J. Phys. Chem. Lett. 2: 1051-1055.
[15] Yu W. W., Chang E., Drezek R., Colvin V. L., (2006), Water-soluble QDs for biomedical applications. Biochem. Biophys. Res. Communic. 348: 781-786.
[16] Larson D. R., Zipfel W. R., Williams R. M., Clark S. W., Bruchez M. P., Wise F. W., Webb W. W., (2003), Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science. 300: 1434-1436.
[17] Liu T. C., Huang Z. L., Wang H. Q., Wang J. H., Li X. Q., Zhao Y. D., Luo Q. M., (2006), Temperature-dependent photoluminescence of water-soluble QDs for a bioprobe. Analyt. Chim. Acta. 559: 120-123.
[18] Zhang M., Bai L., Shang W., Xie W., Ma H., Fu Y., Fang D., Sun H., Fan L., Han M., Liu C., YangS. J., (2012), Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. Mater. Chem. 22: 7461-7467.
[19] Liu L., Guo X., Li Y., Zhong X., (2010), Bifunctional multidentate ligand modified highly stable water-soluble quantum dots. Inorg. Chem. 49: 3768-3775.
[20] Akin M., Bongartz R., Walter J. G., Demirkol D. O., Stahl F., Timur S., Scheper T., (2012), PAMAM-functionalized water soluble quantum dots for cancer cell targeting. J. Mater. Chem. 22: 11529-11536.
[21] Hezinger A. F. E., Teßmar J., Göpferich A., (2008), Polymer coating of QDs–A powerful tool toward diagnostics and sensorics. Europ. J. Pharmac. Biopharmac. 68: 138-152.
[22] Jańczewski D., Tomczak N., Han M. Y., (2011), Synthesis of functionalized amphiphilic polymers for coating QDs. Nat. Protocols. 6: 1546–1553.
[23] Foubert A., Beloglazova N. V., Rajkovic A., Sas B., Madder A., Goryacheva Y. I., Saeger S. D., (2016), Bioconjugation of QDs: Review & impact on future application. TrAC Trends in Analyt. Chem. 83: 31-48.
[24] Blanco-Canosa J. B., Wu M., Susumu K., Petryayeva E., Jennings T. L., Dawson P. E., Algar W. R., Medintz I. L., (2014), Recent progress in the bioconjugation of QDs. Coordin. Chem. Rev. 263–264: 101-137.
[25] Boeneman K., Deschamps J. R., Buckhout-White S., Prasuhn D. E., Blanco-Canosa J. B., Dawson P. E., Stewart M. H., Susumu K., Goldman E. R., Ancona M., Medintz I. L., (2010), Quantum dot DNA bioconjugates: Attachment chemistry strongly influences the resulting composite architecture. ACS Nano. 4: 7253-7266.
[26] Alibolandi M., Abnous Kh., Sadeghi F., Hosseinkhani H., Ramezani M., Hadizadeh F., (2014), Folate receptor-targeted multimodal polymersomes for delivery of quantum dots and doxorubicin to breast adenocarcinoma: In vitro and in vivo evaluation. Int. J. Pharmac. 500: 162-178.
[27] Alibolandi M., Abnous K., Ramezani M., Hosseinkhani H., Hadizadeh F., (2014), Synthesis of AS1411-aptamer-conjugated CdTe quantum dots with high fluorescence strength for probe labeling tumor cells. J. Fluoresc. 24: 1519-1529.
[28] Hosseinkhani H., (August 2019), Nanomaterials in advanced medicine. John Wiley & Sons. ISBN: 9783527345496.
[29] Abraham J. D., Sharifzadeh Gh., Victoria N., Hosseinkhani, H., (2021), Safety evaluation of nanotechnology products. Pharmaceutics. 13: 13101615.
[30] Wenjie H., Hosseinkhani H., Mohammadinejad R., Roveimiab Z., Hueng Du. Y., Liang K., Domb A. J., (2014), Polymeric nanoparticles for therapy and imaging. Polym. Adv. Technol. 25: 1216-1225.
[31] Kowalski P., Machnikowski P., (2008), Multiple exciton generation in InAs nanocrystals. Acta Phys. Pol. A. 114: 1187–1192.
[32] Beard M. C., (2011), Multiple exciton generation in semiconductor quantum dots. J. Phys. Chem. Lett. 2: 1282–1288
[33] Shockley W., Queisser H. J., (1961), Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32: 510-516.
[34] Klem E. J. D., MacNeil D. D., Cyr P. W., Levina L., Sargent E. H., (2007), Efficient solution-processed infrared photovoltaic cells: Planarized all-inorganic bulk heterojunction devices via interquantum-dot bridging during growth from solution. Appl. Phys. Lett. 90: 10–12.
[35] McDonald S. A., Konstantatos G., Zhang S., Cyr P. W., Klem E. J. D., Levina L., (2005), Solutionprocessed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4: 138–142.
[36] Kumar D., Sumanth B., Mahesh M., (2018), Quantum nanostructures (QDs): An Overview. In book: Synthesis of Inorganic Nanomaterials.
[37] Li J., Zhu J., (2013), QDs for fluorescent biosensing and bio-imaging applications. Analyst. 138: 2506-2515.
[38] Hutter E., Maysinger D., (2011), Gold nanoparticles and QDs for bioimaging. Microscopy Res. Techniq. 74: 592-604.
[39] Huo F., Liang W., Tang Y., (2019), Full-color carbon dots with multiple red-emission tuning: on/off sensors, in vitro and in vivo multicolor bioimaging. J. Mater. Sci. 54: 6815-6825.
[40] Sellers I. R., Liu H. Y., Badcock T. J., Groom K. M., Mowbray D. J., Gutiérrez M., Hopkinson M., Skolnick M. S., (2005), Lasing and spontaneous emission characteristics of 1.3μm In(Ga)As quantum-dot lasers. Phys. E: Low-dimens. Sys. Nanostruc. 26: 382-385.
[41] Linkov P., Krivenkov V., Nabiev I., Samokhvalov P., (2016), High Quantum yield CdSe/ZnS/CdS/ZnS multishell QDs for biosensing and optoelectronic applications. Mater. Today: Proceed. 3: 104-108.
[42] Wei Y., Chen L., Zhao S., (2021), Green-emissive carbon QDs with high fluorescence quantum yield: Preparation and cell imaging. Front. Mater. Sci. 15: 253-265.
[43] Grabolle M., Spieles M., Lesnyak V., Gaponik N., Eychmüller A., Resch-Genger U., (2009), Determination of the fluorescence quantum yield of quantum dots: Suitable procedures and achievable uncertainties. Analyt. Chem. 81: 6285-6294.
[44] Resch-Genger U., Grabolle M., Cavaliere-Jaricot S., (2008), QDs versus organic dyes as fluorescent labels. Nat. Meth. 5: 763-775.
[45] Bruchez M. P., (2011), QDs find their stride in single molecule tracking. Current Opin. Chem. Biol. 15: 775-780.
[46] Zhang L. J., Xia L., Xie H. Y., Zhang Z. L., Pang D. W., (2019), Quantum dot based biotracking and biodetection. Analyt. Chem. 91: 532-547.
[47] Peng H., Zhang L., Soeller Ch., Travas-Sejdic J., (2007), Preparation of water-soluble CdTe/CdS core/shell QDs with enhanced photostability. J. Lumines. 127: 721-726.
[48] Hotz C. Z., Bruchez M., (2007), QDs: Applications in biology (Methods in Molecular Biology, 374), ISBN-10:3540140077.
[49] Reimann S. M., Matti M., (2002), Electronic structure of quantum dots. Rev. Mod. Phys. 74: 1283-1342.
[50] Vasudevan D., Ranganathan Gaddam R., Trinchi A., ColeI., (2015), Core-shell QDs: Properties and applications. J. Alloys Comp. 636: 395-404.
[51] Zhang B., Cheng J., Li D., Liu X., Ma G., Chang J., (2008), A novel method to make hydrophilic QDs and its application on biodetection. Mater. Sci. Eng: B. 149: 87-92.
[52] Xu J., Ruchala P., Ebenstain Y., Jack Li J., Weiss S., (2012), Stable, compact, bright biofunctional quantum dots with improved peptide coating. J. Phys. Chem. B. 116: 11370-11378.
[53] Ma L., Tu C., Le P., Chitoor S., Jun Lim S., Zahid M. U., Teng K. W., Ge P., Selvin P. R., Smith A. M., (2016), Multidentate polymer coatings for compact and homogeneous quantum dots with efficient bioconjugation. J. Am. Chem. Soc. 138: 3382-3394.
[54] Gao W., Zhou Y., Xu C., Guo M., Qi Z., Peng X., Gao B., (2019), Bright hydrophilic and organophilic fluorescence carbon dots: One-pot fabrication and multi-functional applications at visualized Au3+ detection in cell and white light-emitting devices. Sens. Actuat. B: Chem. 281: 905-911.
[55] Hotz C. Z., (2005), Applications of quantum dots in biology. Methods Mol. Biol. 303: 1-17.
[56] Singh M. K., Mathpal M. C., Agarwal A., (2012), Optical properties of SnO2 QDs synthesized by laser ablation in liquid. Chem. Phys. Lett. 536: 87-91.
[57] Dieleman C. D., Ding W., Wu L., Thakur N., Bespalov I., Daiber B., Ekinci Y., Castellanos S., Ehrler B., (2020), Universal direct patterning of colloidal quantum dots by (extreme) ultraviolet and electron beam lithography. Nanoscale. 12: 11306-11316.
[58] Massimo F. B., Gadipalli R. R., Martin L. A., Rich L. E., Yamilov A., Heckman B. R., Leventis N., Guha S., Katsoudas J., Divan R., Mancini D. C., (2007), Quantum dots by ultraviolet and x-ray lithography. Nanotechnology. 18: 31/315603.
[59] Kuruma, K., Ota Y., Kakudam M., Iwamoto S., Arakawa Y., (2020), Surface-passivated high-Q GaAs photonic crystal nanocavity with QDs. APL Photonics. 5: 5144959.
[60] Birindelli S., Felici M., Wildmann J. S., Polimeni A., Capizzi M., Gerardino A., Rubini S., Martelli F., Rastelli A., Trotta R., (2014), Single photons on demand from novel site-controlled GaAsN/GaAsN : H quantum dots. Nano Lett. 3: 1275-1280.
[61] Kundu S., Pillat V. K., (2020), Synthesis and characterization of graphene QDs. From the book Volume 2 Multifunctional Materials. Vol.2, Sec. 5.
[62] Timothy J. G., Valerie J. L., Subhash H. R., Ian M. K., Howard W. H., (1997), Synthesis of gallium nitride QDs through reactive laser ablation. Appl. Phys. Lett. 70: 3122-3124.
[63] Mazumder S., Dey R., Mitra M. K., Mukherjee S., Das G. C., (2009), Review: Biofunctionalized quantum dots in biology and medicine. J. Nanomater. 2009: 815734.
[64] Nozik A. J., (2008), Multiple exciton generation in semiconductor quantum dots. Chem. Phys. Lett. 457: 3-11.
[65] Bera D., Qian L., Tseng T. K., Holloway P. H., (2010), Quantum dots and their multimodal applications: A review. Material. 3: 2260-2345.
[66] Mansur A., Mansur H., González J., (2011), Enzyme-polymers conjugated to quantum-dots for sensing applications. Sensors. 11: 9951-9972.
[67] Ayela D. W., Su W. N., Wu C. C., Shiau C. Y., Hwang B. J., (2014), Amorphous precursor compounds for CuInSe2 particles prepared by a microwave-enhanced aqueous synthesis and its electrophoretic deposition. Cryst. Eng. Comm. 16: 3121-3127.
[68] Kuldeep D., (2014), Synthesis and characterization of PVA capped CdS nanocrystals. Res. J. Phys. Sci. 2: 1-3.
[69] Pu Y., Cai F., Wang D., Wang J. X., Chen J. F., (2018), Colloidal synthesis of semiconductor quantum dots toward large-scale production: A review. Indus. Eng. Chem. Res. 57: 1790-1802.
[70] Baruah U., Gogoi N., Konwar A., Deka M. J., Chowdhury D., Majumdar G., (2014), Carbon dot based sensing of dopamine and ascorbic acid. J. Nanopart. 2014: 178518.
[71] Bonilla J. C., Bozkurt F., Ansari Sh., Sozer N., Kokini J. L., (2016), Applications of QDs in food science and biology. Trends in Food Sci. Technol. 53: 75-89.
[72] Smith A., Nie S., (2009), Next-generation QDs. Nat. Biotechnol. 27: 732-736.
[73] Gao X., Chan W. C. W., Nie Sh., (2002), Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J. Biomed. Opt. 7: 532-537.
[74] Ballou B., Christoffer Lagerholm B., Ernst L. A., Bruchez M. P., Waggoner A. S., (2004), Noninvasive imaging of quantum dots in mice. Bioconjug. Chem. 15: 79-86.
[75] Byers R. J., Hitchman E. R., (2011), QDs brighten biological imaging. Prog. Histochem. Cytochem. 45: 201-237.
[76] Gidwani B., Sahu V., Shukla S. S., Pandey R., Joshi V., Kumar Jain V., Vyas A., (2021), QDs: Prospectives, toxicity, advances and applications. J. Drug Deliv. Sci. Technol. 61: 102308-102312.
[77] Filali S., Pirot F., Miossec P., (2020), Biological applications and toxicity minimization of semiconductor QDs. Trends in Biotechnol. 38: 163-177.
[78] Wang Y., Hu R., Lin G., Roy I., Yong K. T., (2013), Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity. ACS Appl. Mater. Interf. 5: 2786-2799.
[79] Wang Z., Tang M., (2021), The cytotoxicity of core-shell or non-shell structure QDs and reflection on environmentally friendly: A review. Env. Res. 194: 110593-110597.
[80] BajwaN., Mehra N. K., Jain K., Jain N. K., (2016), Pharmaceutical and biomedical applications of QDs. Artific. Cells, Nanomedic. Biotechnol. 44: 758-768.
[81] Atchudan R., Jebakumar T. N., Edison I., Shanmugam M., Perumal S., Somanathan T., Lee Y. R., (2021), Sustainable synthesis of carbon QDs from banana peel waste using hydrothermal process for in vivo bioimaging. Phys. E: Low-dimens. Sys. Nanostruc. 126: 114417-114421.
[82] Shi C., Qi H., Ma R., Sun Z., Xiao L., Wei G., Huang Z., Liu S., Li J., Dong M., Fan J., Guo Z., (2019), N and S-self-doped carbon QDs from fungus fibers for sensing tetracyclines and for bioimaging cancer cells. Mater. Sci. Eng: C. 105: 110132-11136.
[83] Reshma V. G., Mohanan P. V., (2019), QDs: Applications and safety consequences. J. Luminesc. 205: 287-298.
[84] Sayed N., Allawadhi P., Khurana A., Singh V., Navik U., Pasumarthi S. K., Khurana I., Banothu A. K., Weiskirchen R., Bharani K. K., (2022), Gene therapy: Comprehensive overview and therapeutic applications. Life Sci. 294: 120375-120379.
[85] Hernando P. J., Dedola S., Marín M. J., Field R. A., (2021), Recent developments in the use of glyconanoparticles and related QDs for the detection of lectins, viruses, bacteria, and cancer cells. Front. Chem.
9: 668509.
[86] Peter L., Sahand M., Søren S., (2015), Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Modern Phys. 87: 347–400.
[87] Daniel L., Vincenzo D., David P., (1998), Quantum computation with quantum dots. Phys. Rev. A. 57: 120–126.
[88] Ramírez H. Y., Flórez J., Camacho A. S., (2015), Efficient control of coulomb enhanced second harmonic generation from excitonic transitions in quantum dot ensembles. Phys. Chem. Chem. Phys. 17: 23938–23946.
[89] Coe-Sullivan S., Steckel J. S., Woo W.-K., Bawendi M. G., Bulović V., (2005), Large-area ordered quantum-dot monolayers via phase separation during spin-casting. Adv. Func. Mater. 15: 1117–1124.
[90] Hu Z., Yin Y., Ali M. U., Peng W., Zhang S., Li D., Zhou H., (2020), Inkjet printed uniform quantum dots as color conversion layers for full-color OLED displays. Nanoscale. 12: 2103-2110.
[91] Mohammadi M., Mohammadi M., Gorgin S., (2016), An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelect. J. 50: 35-43.
[92] Kurt H., Yüce M., Hussain B., Budak H., (2016), Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection. Biosens. Bioelectronics. 81: 280-286.
[93] Chinnathambi Sh., Shirahata N., (2019), Recent advances on fluorescent biomarkers of near-infrared QDs for in vitro and in vivo imaging. Sci. Technol. Adv. Mater. 20: 337-355.
[94] Achadu O. J., Takemura K., Khoris I. M., Park E. Y., (2020), Plasmonic/magnetic molybdenum trioxide and graphitic carbon nitride QDs-based fluoroimmunosensing system for influenza virus. Sens. Actuat. B: Chem. 321: 128494-128498.
[95] Xiang Q., Huang J., Huang H., Mao W., Ye Z., (2018), A label-free electrochemical platform for the highly sensitive detection of hepatitis B virus DNA using graphene quantum dots. RSC Adv. 8: 1820-1825.
[96] Jelinek R., (2017), Bioimaging applications of carbon-dots. Springer Book. 61-70
[97] Markna J. H., Rathod P. K., (2022), Review on the efficiency of quantum dot sensitized solar cell: Insights into photoanodes and QD sensitizers. Dyes and Pigments. 199: 110094.
[98] Garg P., Sangam S., Kochhar D., Pahari S., Kar C., Mukherjee M., (2020), Exploring the role of triazole functionalized heteroatom co-doped carbon quantum dots against human coronaviruses. Nano Today. 35: 101001.
[99] Singh K., Chaudhary G. R., Singh S., Mehta S. K., (2014), Synthesis of highly luminescent water stable ZnO quantum dots as photoluminescent sensor for picric acid. J. Luminesc. 154: 148-154.
[100] Parveen K., Akash D., Sukesh Sh., Lalit B., (2012), Synthesis of mercaptopropionic acid stabilized CdS quantum dots for bioimaging in breast cancer. Adv. Mat. Lett. 3: 471-475.
[101] Bhatnagar D., Kumar V., Kumar A., Kaur I., (2016), Graphene quantum dots FRET based sensor for early detection of heart attack in human. Biosens. Bioelect.79: 495-499.
[102] Chini M. K., Kumar V., Javed A., Satapathi S., (2019), Graphene quantum dots and carbon nano dots for the FRET based detection of heavy metal ions. Nano-Struct. Nano-Objects. 19: 100347.
[103] Sutariya P., Soni H., Gandhi S. A., Pandya A., (2019), Single step fluorescent recognition of As3+, Nd3+ and Br- consuming pyrene-allied calix[4]arene : Their application to real samples, computational modelling and paper based device. New J. Chem. 43: 737-747.
[104] Sutariya P., Soni H., Gandhi S. A., Pandya A., (2019), Novel luminescent paper based calix[4]arene chelation enhanced fluorescence photo induced electron transfer probe for Mn2+, Cr3+ and F-. J. Luminesc. 208: 6-17.
[105] Sutariya P., Soni H., Gandhi S. A., Pandya A., (2019), Novel tritopic calix[4]arene CHEF-PET fluorescence paper based probe for La3+, Cu2+, and Br-: Its computational investigation and application to real samples. J. Luminesc. 212: 171-179.
[106] Sutariya P., Soni H., Gandhi S. A., Pandya A., (2019), Luminescent behavior of pyrene-allied calix[4]arene for highly pH selective recognition and determination of Zn2+, Hg2+ and I- via CHEF-PET mechanism: Computational experiment and paper based device. New J. Chem. 43: 9855-9864.
[107] Joshi K. V., Joshi B. K., Pandya A., Sutariya P. G., Menon, S. K., (2012), Calixarene capped ZnS quantum dots as an optical nanoprobe for detection and determination of menadione. Analyst. 137: 4647-4650.
[108] Pandya A., Sutariya P. G., Menon S. K., (2013), Fluorescence switch on–off–on receptor constructed of quinoline allied calix[4]arene for selective recognition of Cu2+ from blood serum and F− from industrial waste water. Analyst. 138: 2531-2535.
[109] Sutariya P. G., Pandya A., Lodha A., Menon S. K., (2016), A simple and rapid creatinine sensing via DLS selectivity, using calix[4]arene thiol functionalized gold nanoparticles. Talanta. 147: 590-597. | ||
آمار تعداد مشاهده مقاله: 734 تعداد دریافت فایل اصل مقاله: 655 |