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Abstract 

Purpose Agricultural crop residues (ACR) and agro-industrial waste (AIW) are abundant in Indonesia and primar-

ily used as substitutes for cattle feed or to be naturally decomposed in the nearby environment. This review at-

tempts to examine the potential valorisation of ACR and AIW into biosorbent. This paper also provides the chal-

lenges and opportunities in applying wastewater biosorption treatment in Indonesia.  

Method A literature review from available literature was carried out to reveal and explore the ability and prospec-

tive application of ACR and AIW   for treatment of wastewater 

Results The reviews show that ACR and AIW can be used for wastewater treatment in different forms including: 

filter media, activated carbon, biosorbent and biochar. Activated carbon has demonstrated its high ability and 

efficiency in removing organic pollutants in wastewater. This is due to its large porosity, internal surface area, 

and mechanical strength. ACR and AIW in wastewater biosorption can be applied in any small-scale agro-indus-

tries because of their simplicity procedures, technology, and low cost. Various options of wastewater technologies 

have also been investigated in recent years. Yet, various issues have been aroused surrounding this technology, 

including the biosorptive capacity, the performance-effectiveness, the design, and the high operation costs. 

Conclusion The study found that problems of a high cost of carbonation and activation process, the needs of re-

generation treatment, and the up-scaling or commercialization might hinder the sustainable valorisation of ACR 

and AIW.  

 
Keywords Agricultural and agro-industrial waste, Activated carbon, Eco-friendly wastewater treatment, Natural 

biosorbent, Pollutants removal 

 

Introduction 

Agricultural crop residues (ACR) and agro-indus-
trial waste (AIW) – characteristics and potential 

 
Agricultural crop residue (ACR) is highly potential in 

Indonesia, with a continuously increasing trend but 

limited treatment or conversion technologies are avail-

able (Suhartini et al. 2021); either for production of bi-

oenergy or bioproducts (Suhartini et al. 2022a). There-

fore, many ACRs are disposed directly to nearby envi-

ronment or landfill, which can negatively affect the en-

vironmental quality and human health (Bolong et al. 

2016). The potency of ACR in Indonesia can be seen 

in Table 1. 
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Table 1 The potency of agricultural crop waste in Indonesia 
Agricultural crop wastes Production (million tons) Refs. 
Rice straw 81.90 (Suhartini et al. 2021) 
Maize straw 11.50 - 22.90 
Coffee husk 0.38 - 0.45 
Coconut husk 10.40 (Brunerová et al. 2017) 

 Cacao pod husk 0.61 
Banana peels 2.71 
Rice husk 15.00 - 16.50 (Dhaneswara et al. 2020) 
Corn straw 87.5 (Muktiani et al. 2017) 
Corn stover (or cob) 5.19 (Ong et al. 2018) 
Sugarcane bagasse 9.75 
Rubber wood residues 41.00 (Conrad and Prasetyaning 2014) 
Oil palm empty bunches (OPEFBs) 45.86 (Suhartini et al. 2022b) 
Soybean straw 0.23 (Krisnawati and Adie 2015; 

Ministry of Agriculture of the 
Republic of Indonesia 2018) 

 
Agro-industrial waste (AIW) is any waste material 

generated from the production process in agricultural-

based industries (Mussatto et al. 2012). They found 

that AIW has now been sought as a potential resource 

due to its high sugar, mineral, and protein contents, 

suitable as growing media for microorganisms. Be-

sides, nee'Nigam et al. (2009) reported that AIW con-

tains high cellulose (35 - 50%), hemicellulose (20 - 

35%), and lignin (10 - 25%), depending on the type of 

plant and production process used. In detail, the com-

position of lignocellulosic waste derived from agricul-

tural and agro-industrial sectors is shown in Table 2.  

 
Table 2 Characteristics of lignocellulosic waste from agriculture and agro-industrial sectors 

Waste type  Cellulose  
(% TS) 

Hemicellulose 
(% TS) 

Lignin 
(% TS) 

Barley straw 33.8 21.9 13.8 
Corn stover  33.7 31.9 6.1 
Corn stalks 35.0 16.8 7.0 
Cotton stalks 58.5 14.4 21.5 
Oat straw 39.4 27.1 17.5 
Rice straw 36.2 19.0 9.9 
Rye straw 37.6 30.5 19.0 
Soybean stalks 34.5 24.8 19.8 
Sugarcane bagasse 40.0 27.0 10.0 
Sunflower stalks 2.1 29.7 13.4 
Maize straw 32.9 24.0 8.9 

Note: TS= total solids. Source: nee'Nigam et al. (2009) 
 
AIW potency in Indonesia is also highly abundant 

(Suhartini et al. 2021). For example, the total genera-

tion of tofu dregs from tofu industries  was 1.024 mil-

lion tons (Suhartini et al. 2022a). The total generation 

of various AIW from several fruit- and vegetable-

based processing industries, including orange peel, 

seed and segment membrane (1.20 – 1.44 million tons) 

(Indonesian Statistics 2021a; Marín et al. 2007), pine-

apple peels (0.128 million tons) (Anwar et al. 2015); 

cassava peels and fiber (3.81 million tons) (Ratnadewi 

et al. 2016); and potato peel (0.272 million tons) 

(Chavez et al. 2020; Indonesian Statistics 2021b). In 

the case of other industries such as tempeh and tapioca 

agro-industries in Indonesia, these also generated solid 

waste or wastewater which contains high organic ma-

terial potential to be further valorised into high value-

added products such as bioenergy, biochemicals, and 

other bioproducts (De Corato et al. 2018; Ezejiofor et 

al. 2014; Zhang et al. 2016).  Food waste from the fast-

food industry also contributes a huge potential for 

waste disposal. According to Soma (2017), in Indone-

sia, of the total municipal solid waste (MSW) produc-

tion of 40.15 thousand tons/year, the proportion of 

food waste disposed of to landfills has the highest 

value (63%), which is mainly derived from the food 

industry. These findings show a huge
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 potential and availability for ACR and AIW in Indo-

nesia.  

 
Wastewater treatment technologies – current and 
future trends  
 
Agricultural and agroindustry sectors have positively 

contributed to the Indonesian economy and played a 

significant role in providing job opportunities for local 

communities (Suryaningrat 2014).  However, many 

agro-industries, especially small- and medium-scale 

agro-industries (SMEs), still have problems with their 

waste, including wastewater and solid waste. Many of 

them directly disposed of wastewater to the nearby 

river or water bodies  (Tabatabaei et al. 2022). Such 

practices cause a detrimental impact on the environ-

ment and lead to water pollution, water toxicity or 

event carcinogenic effect to human and aquatic life 

(Gao et al. 2010; Lourenço et al. 2015); mainly due to 

high chemicals or high COD concentration in 

wastewater (Lim et al. 2010; Lotito et al. 2012a;  

2012b; Wei et al. 2015). Hence, the adoption of 

wastewater treatment technology that is cheap, simple 

to operate, and can effectively remove pollutants in 

agroindustry’s wastewater is critically needed. Vari-

ous studies have highlighted several wastewater treat-

ment technologies, as shown in Table 3. For example, 

aerobic granular sludge (AGS) technology is a prom-

ising technology for treating textile wastewater 

(Franca et al. 2015; Gao et al. 2010; Kolekar et al. 

2012; Lotito et al. 2012c; Wei et al. 2015). Other than 

bacteria and protozoa, AGS is composed of extracel-

lular polymeric substances (EPS), which have func-

tional groups (i.e. carboxyl, phosphonate, amine, hy-

droxyl groups) that provide binding sites beneficial for 

non-organic pollutant (i.e. chemical dye) biosorption 

(Gao et al. 2010; Nancharaiah and Reddy 2018; Wei 

et al. 2015).  Fenton oxidation is one of the advanced 

oxidation processes (AOPs) suggested for the partial 

or complete decomposition of pollutants in 

wastewater, resulting in bio transformed products that 

are less toxic and more biodegradable (Karthikeyan et 

al. 2011). A combination of photo-Fenton and aerobic 

sequence batch reactor (SBR) also had similar perfor-

mance, which significantly remove both organic and 

inorganic pollutants in wastewater, producing suitable 

effluents qualities for water reuse (Blanco et al. 2014). 

On the other hand, several studies have emphasized 

the efficacy and the benefits of using natural bio-

sorbent in treating wastewater. For instance, Suhartini 

et al. (2013) demonstrated biofiltration with a combi-

nation of natural biosorbent made of M. oleivera seed 

and natural filter media (i.e. sand, gravel, bamboo 

sheet, and coconut coir) effectively removed organic 

pollutants in tapioca wastewater.  Benchekor et al. 

(2018) reported that natural materials such as from 

shrimp shells (Aristeus antennautus) can be made into 

a chitin-based material adsorbent, which was potential 

to treat the purple NR5 dyes. Abdolali et al. (2014) has 

also shown that converting lignocellulosic waste ma-

terial into biosorbent can remove toxic metals ion and 

dye pollutants in wastewater streams. Several studies 

found that agricultural crop residues (ACR) such as 

oiltea waste for dyes removal (Liu et al. 2016a), as 

well as coconut shells (Kumar and Meikap 2014) and 

coconut husk (Verma et al. 2021) can be used as bio-

sorbent for removing Cr (VI) from wastewater. While 

Mo et al. (2018) reported that agro-industrial waste 

(AIW) has potential as a natural biosorbent of organic 

and inorganic pollutants in water or wastewater 

streams. These findings indicated that ACR and AIW 

could be further used in treating wastewater as a natu-

ral biosorbent. Grace et al. (2016) has examined that 

various waste materials, including coconut shell, 

tea/coffee waste, rice husk, masonry waste, wood 

waste, and fly ash, can be used in water treatment pro-

cesses. This paper investigates the potential valorisa-

tion of ACR and AIW into biosorbent and scrutinizes 

the challenges and opportunities of their application in 

wastewater treatment in Indonesia.  
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Table 3 Comparison of wastewater treatment technologies from various studies 
Technology   Advantages Disadvantages Refs. 
Activated sludge (AS) - Simple operations 

- Highly cost-effective treatment 
- Limit the formation of secondary pollution  
- Has a low capital cost 
- More eco-friendly than chemical treatment (such as chlo-

rination process) 
 

- Inefficient to degrade complex or toxic pollutants 
- Has several operational problems such as bulking, foaming, 

sludge settling, and process instability 
- Has poor performance in nutrient removal 

 

(Ahmed et al. 2017; 
Guo and Zhang 2012; 
He et al. 2017; Ju and 
Zhang 2015) 

Aerobic granular sludge 
(AGS) 

- Effective for removing non-organic pollutants (i.e. che-
mical dyes) 

- Can be effectively used as a low-cost and alternative bio-
sorbent 

- A stable dye removal can be achieved (> 90%) 
- Can promote complete biodegradation of aromatic amine 
- The efficacy performance was not affected by dye or its 

breakdown products 
- It offers compact and cost-effective treatment 

 

- Highly dependent on pH value 
- pH of 2 is favourable 
- Several issues are found surrounding process’s stability and 

longer start-up period (10 - 13 months) 
- Problems with dewatering and digestibility of AGS  
- Ideal operational condition for higher nitrogen and phospho-

rous removal has not yet been established 
- Full-scale application has yet been established 

   

(Franca et al. 2015; 
Gao et al. 2010; 
Kolekar et al. 2012; 
Liu et al. 2016b; 
Nancharaiah and 
Reddy 2018; Wei et al. 
2015) 

Sequence batch reactor 
(SBR) 

- Simple and flexible operation 
- Only use a single tank for equalization, biological 

treatment, and secondary clarification  
- Full-scale operation has been established 
- Has an improved removal efficacy 
- Produce effluent with reusable quality  
- The technology has better process control and design, re-

ducing manpower in operation 
- Can be applied in small area 
- Has 60% lower cost than conventional activated sludge 

process 
- It offers smaller foot-print area and a low investment cost 

 

- Need higher level of maintenance than the conventional sys-
tem  

- Need higher level of sophistication (due to automatization and 
advanced controls) 

- Potential plugging of aeration devices during the cycle 
- Has timing constraints 

(Dutta and Sarkar 
2015; Fernandes et al. 
2013; Santos and 
Boaventura 2015; 
Showkat and Najar 
2019; Singh and 
Srivastava 2011) 
 

Sequencing batch biofilter 
granular reactor (SBBGR) 

- Can be operated at high hydraulic and organic loadings 
with high performance efficacy 

- Suitable effluent can be generated with only one biologi-
cal step 

- Has a low sludge production (i.e. reducing waste disposal 
cost) 

- Smaller reactor can be used 
- Has lower operational cost than conventional biological 

treatment 
- No need post-treatment tanks 
- Simple and flexible operation 
- Has an increased resistance to wastewater fluctuation 

- COD removal (36 - 80%) was halted due to the presence of re-
calcitrant fraction  

- A low TKN removal efficiency (< 30%) due to competition of 
microorganism for oxygen 

(De Sanctis et al. 2020; 
Di Iaconi et al. 2017; 
Lotito et al. 2012a; 
2012b; 2012c) 
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Continued Table 3 Comparison of wastewater treatment technologies from various studies 
Technology   Advantages Disadvantages Refs. 
Advanced oxidation pro-
cesses (AOPs) 

- More effective and efficient of degrading toxic and recal-
citrant organic pollutants  

- Effective for removing compounds of emerging concern 
(CECs), such as pharmaceuticals compounds, personal 
care products, illicit drugs, and pesticides 

- Some AOPs can be operated under sunlight or artificial 
light sources  

- Low investment cost 
- Can be used as pre-treatment combined with biological 

treatment 
- Can be to remove micro-pollutants (i.e. polishing step or 

quaternary treatment) 
 

- Less applied for disinfection  
- High operating cost due to chemical and energy demand 
- Performance’s efficiency is highly dependent on type of 

AOPs, operational condition, and characteristics of targeted 
pollutants 

- May produce unpredictable by-products, thus limiting wide 
application 

(Ameta 2018; 
Bermúdez et al. 2021; 
Bethi et al. 2016; Deng 
and Zhao 2015; Luo et 
al. 2021; Nidheesh et 
al. 2013; Poyatos et al. 
2010)  
 
 

Fenton oxidation - Can be used for partial or complete decomposition of pol-
lutants 

- Effluents are less toxic and more biodegradable 
- Has a low investment cost 
- Effective for removing hydrocarbons 
- Simple and easy operation 
- Use less toxic reagents 
- No mass transfer limitation 

 

- Need high concentration of iron (in solution) 
- the process is highly depended with the presence of ferric ion 
- Conventional Fenton oxidation method required acidic pH 

condition, generated iron sludge, and needed high chemicals 
- Need subsequent effluent treatment before discharge 
- Need sludge treatment which required high amount of chemi-

cals and labors; hence the process is not economically feasible  

(Bello et al. 2019a; 
Karthikeyan et al. 
2011; Tekin et al. 
2006; Tony et al. 2012; 
Yoon et al. 2001)  

Combination of photo-
Fenton and aerobic SBR 

- Significantly removed organic and inorganic pollutants (> 
80%) 

- Effluents are non-toxic and meet the discharge standard 
- Produced suitable effluents qualities for water reuse 
- Reduced processing time by 50% compared with single 

biological treatment 
- Can completely degrade toxic and recalcitrant pollutants 
- Has an improved effluent biodegradability 
- Need less chemicals and energy than conventional Fenton 

oxidation 
 

- Complex operation   
- Operation cost is slightly higher 

(Blanco et al. 2014; 
Elmolla and Chaudhuri 
2011; Esteves et al. 
2016; García-Montaño 
et al. 2006; Ramírez et 
al. 2012; Rodrigues et 
al. 2017) 
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Studies on the use of ACR and AIW in wastewater 
treatment  
 
Various studies have reported ACR and AIW in 

wastewater treatment either as filter media, activated 

carbon, biosorbent or biochar, detailed explanation be-

low. Table 4 summarized the materials, treatments, 

metal ions, adsorbent dosage, maximum adsorption ca-

pacity, and drawbacks. Other studies on the use of ACR 

and AIW for removing other pollutants such as nitrate, 

phosphorous, pesticide, pharmaceuticals compounds, 

and salinity are shown in Table 5. These findings also 

confirmed that different treatment or activation methods 

influence the efficacy performance of ACR or AIW to 

remove the pollutants in wastewater. 

 
Filter media 

 
Asim et al. (2020) studied ACR (i.e. coconut coir) as fil-

ter media in treating Cu (II)-contaminated water. Coco-

nut coir is a natural fiber from coconut husk widely and 

traditionally used as a hanging basket due to its high-

water retention and absorption. The fiber of coconut coir 

is a potential biomaterial for heavy metal removal. Their 

study further revealed that alkali-treated coconut coir 

has five-fold Cu (II) removal compared to untreated co-

conut coir. This finding indicated that alkali treatment 

enhances the water-absorbency properties of the adsorp-

tion properties of coconut coir, thus resulting in superfi-

cial and effective natural filter materials. Liu and Chen 

(2017) construct a wastewater purification system using 

sorghum stalks and oyster shells as natural filter media. 

With the system, the concentration of suspended solids, 

biochemical oxygen demand (BOD) and NH4-N were 

reduced by 95.3, 97.0, and 99.3%, respectively, meeting 

the tertiary wastewater treatment effluent standards. 

Furthermore, carbon from oyster shells could absorb 

phosphorus in wastewater, accounting for 50%. The 

study also indicated that this low-carbon wastewater 

treatment system could achieve better wastewater efflu-

ent for irrigation purposes. Ghazy et al. (2016) investi-

gated the use of ACR, such as rice straw, date palm fi-

ber, and wood chips of orange trees as biofilter media in 

treating municipal wastewater. This study aimed to 

build sustainable and cost-effective wastewater treat-

ment (at a pilot-scale) and reduce ACR problems in 

Egypt. Their study demonstrated that the reduction of 

BOD, COD, total N, and total P were in the range of 66 

- 89%, 64 - 87%, 45 - 56%, and 32 - 52%, respectively. 

Biofilter made of date palm fiber was the most effective 

media in removing organic pollutants in wastewater. 

The findings confirmed that biofilter from ACR can be 

a favorable and sustainable option in creating a low-car-

bon wastewater treatment plant. Rodriguez et al. (2020) 

examined wastewater treatment using coagulation (i.e. 

chemical and electrocoagulation) combined with biofil-

tration. Various filter media were used in their study, in-

cluding ACR (i.e. pecan shell, walnut shell), wood bio-

char, and granular activated carbon (GAC). Biofilter 

media of wood biochar and GAC has a better perfor-

mance than with ACR media filter. However, the media 

filter from walnut shell has a significant turbidity re-

moval over 18 h of operation from 16.6 NTU to 0.49 

NTU. Whilst a study by DeleǦAfolabi et al. (2018) 

showed that rice husk and sugarcane bagasse could be 

made into shaped porous ceramics recommended for 

further application as filtration media, for instance. 

Again, these studies demonstrated that ACR could be 

further utilized in wastewater treatment.  

 
Activated carbon 

 
Crini et al. (2019) highlighted that ACR (i.e. bagasse, 

maize cob, coconut shells, wood, peat) are applicable for 

converting into activated carbon, and can be used in wa-

ter or wastewater treatment. Furthermore, their study 

also indicated that AIWs are potential candidates as a 

non-conventional biosorbent. Yahya et al. (2015) re-

ported that activated carbon could be made from ACR 

and AIW, in which the quality can be different based on 

the porosity, carbon content, and filterability of the raw 

materials. They further added that the conversions of 

ACR or AIW into activated carbon are through the py-

rolysis process with and without chemical activating 

agents. There are three routes of activation of carbon 
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 active include physical (i.e. carbonization at 400-850 
oC, steam), chemical (i.e. wet oxidation), and physico-

chemical (i.e. H3PO4/steam, KOH/CO2, ZnCl2/CO2) 

(Heidarinejad et al. 2020; Nayak et al. 2017; Pallarés et 

al. 2018; Yahya et al. 2015). Özsin et al. (2019) reported 

that ACR (i.e. chickpea husk) could be converted into 

activated carbon, which is chemically activated using 

KOH and K2CO3. Their study found that the resultant 

activated carbon can remove Pb(II), Cr(VI), and Cu(II) 

with the maximum adsorption capacities of 135.8, 59.6, 

and 56.2 mg/g, respectively. While a study by Ghorbani 

et al. (2020) showed that activated carbon from sugar 

beet bagasse (SBB) was a feasible alternative in which 

it has 50.45% Cr(VI) removal from aqueous solutions at 

a dosage of 1.49 g/L. The cost-benefit analysis showed 

a production cost of USD 1.5/kg biochar with 34% of 

biochar yield. A previous study by Khan et al. (2016) 

also reported that rice husk-activated carbon, which was 

chemically activated, was very effective in removing 

Cr(VI) from aqueous solutions and wastewater systems. 

Yang et al. (2019) further confirmed that activated car-

bon made of walnut shells was also suitable for the ef-

fective removal of quinoline from industrial wastewater 

streams. Yahya et al. (2015) reviewed that there are var-

ious ACRs have been studied as activated carbon for 

wastewater treatment, including palm shell, mango peel, 

palm kernel shell, coconut shell, ground nutshell, cocoa 

pod husk, corn cob, rice straw, rice hull, sugarcane ba-

gasse, oil palm shell, bamboo, etc. Another study from 

Kumar et al. (2017) also reported that activated carbon 

from rice straw effectively removed Cr(VI) from an 

aqueous solution. Kilic (2020) proved that activated car-

bon from corn cob could remove color in textile 

wastewater by 99%, much higher than using the coagu-

lation method with FeSO4∙7H2O or with FeCl3∙6H2O 

(accounted for 90% color removal).  

 
Biosorbent 
 
Chandane and Singh (2016) reported that adsorbent 

from soybean hulls was very effective in removing the 

color of safranin dye in wastewater streams due to its 

large adsorption capacity. Their study confirmed that 

adsorbent from soybean hulls is natural, eco-friendly, 

and low-cost, and can potentially be implemented at 

large-scale wastewater treatment plants. Another study 

by Daud et al. (2018) also showed that empty oil palm 

fruit bunches (OPEFB) can be converted into a low cost 

biosorbent which could effectively remove the color 

from natural rubber wastewater. Similarly, Draman et al. 

(2015) studied that tea waste and peanut shells are fea-

sible to be used as biosorbent to remove lead poisoning 

(or Pb(II)) in contaminated water. Their study reported 

that the use of tea waste and peanut shell biosorbent (at 

0.5 - 1.5 g) could remove Pb(II) in the range of ~ 89 - 

90% and ~74 - 75%, respectively. The study also 

demonstrated that a longer contact time increased the re-

moval efficiency. A previous study by Srivastava and 

Sharma (2013) also found that biosorbent from rice husk 

was effective in removing Cr(VI) and can be used as an 

alternative of highly cost biosorbent or potential for 

treating Cr(VI)-rich wastewater streams. Ponce et al. 

(2021) evaluated the lignocellulosic biosorbents poten-

tial from corn husk, rice husk, and sugarcane bagasse for 

treating the methylene blue dye. These wastes were 

found to be viable with the removal rate percentage of 

adsorption as follows 98.5 ± 1.2%, 95.4 ± 0.8%, and 

95.7 ± 1.9% for corn husk, rice husk, and sugarcane ba-

gasse, respectively. Furthermore, the rice husk also has 

capability to remove other pollutants, i.e., chromium 

and nickel in range of 5 to 100 ppm (or up to 95% sorp-

tion from the aquatic medium) (Basu et al. 2019). Other 

components from rice husk are the rice husk ash. This 

content could be utilized as the biosorbent for some spe-

cific dyes. A study from Dutta et al. (2014) also revealed 

that rice husk ash (RHA) was prospective to be used as 

a low-cost natural biosorbent for removing the cationic 

dye Brilliant Green (BG) from contaminated water. This 

study found that the RHA biosorbent could remove dye 

pollutants with a high adsorption capacity (250 mg/g) 

within a quick contact time of 15 minutes.  Similarly, a  

study from Mor et al. (2016) also proved RHA bio-
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sorbent has an effective removal ability to remove phos-

phate contamination in the wastewater stream. Tejada-

Tovar et al. (2022) demonstrated that banana (Musa par-

adisiaca) peels waste can also be further valorized as bi-

osorbent to eliminate toxic metal ions (i.e. Ni(II))  from 

aqueous solution. The study reported that with a dosage 

of 0.678 g and temperature of 55 oC, more than 87% of 

Ni(II) could be removed. According to Kumar et al. 

(2018), Pine (Pinus densiflora Sieb) bark is also consid-

ered a potential biosorbent to remove pollutants of 2,4,6-

trichlorophenol from water. Various studies have further 

highlighted the potential of ACR (i.e. oiltea waste) for 

removal of methylene blue (Liu et al. 2016a); rice straw, 

kiln dust, and chrome shavings for removal of organic 

pollutants in wastewater (Nashy and El-Khateeb 2015); 

rice husk, palm leaf, and water hyacinth for Cu(II), 

Co(II), and Fe(III) removal (Sadeek et al. 2015); sugar-

cane bagasse, peels of various fruits, and wheat straw 

for arsenic removal (Shakoor et al. 2016); citrus peels, 

sawdust, and carrot residues for zinc removal (Zwain et 

al. 2014); and grape marc for Red Bemacid ETL re-

moval (Chergui et al. 2019).  

 
Biochar  
 
Shi et al. (2018) confirmed that the novel magnetic bio-

char from phoenix tree leaves was applicable for treating 

Cr(VI)-containing wastewater, with a removal effi-

ciency of 85%. Jang and Kan (2019) reported that engi-

neered biochar derived from alfalfa hays effectively re-

moved tetracycline (TC) pollutants in contaminated wa-

ter. In their study, the resultant biochar was chemically 

activated using NaOH, causing an increase in surface 

area of 796.50ௗm2/g and pore volume of 0.087ௗcm3/g. 

Such improvement resulted in a much greater adsorption 

capacity of TC than non-activated biochar. The amount 

of TC adsorption was 302.37ௗmg/g, almost similar to 

that of commercial activated carbon of Calgon F400). 

Arrebola et al. (2020) also found that activated biochar 

from agricultural residues could remove methylene 

blue-contaminated wastewater. A study by Yap et al. 

(2017) showed that biochar from coconut shells, which 

are then microwave activated, has a high surface area of 

834 m2/g. This activation process contributes to a high 

efficiency in removing Cd and Pb in wastewater. Li et 

al. (2018) reported that biochar made wheat straw and 

rice husk provide higher precipitation adsorption of 

Pb2+, with the value of 70.60% and 83.60% of the total 

adsorption capacity, respectively. While Liu et al. 

(2019) studied the efficacy of biochar from corn stalk in 

removing Pb2+ in contaminated waste at a pilot scale. 

The results indicated that his research offers a way to 

prepare a low-cost and effective industrial adsorbent bi-

ochar for heavy metals adsorption. A recent study by 

Tong et al. (2020) reported that agricultural wastes (i.e. 

cow manure and wheat straw) can be used for making 

montmorillonite (Mt)-biochars. These two biochars 

were then tested for their efficiency in the removal of 

17ȕ-estradiol (E2) from an aqueous solution. The results 

indicated that wheat straw biochar has superior perfor-

mance than cow manure biochar, with the maximum ad-

sorption capacity of 62.89ௗmg/g and 41.02ௗmg/g, respec-

tively.The findings above demonstrated that ACR and 

AIW have higher potential for further valorization as 

low-cost biochar for wastewater treatment.  

 
Type of pollutants removed and its mechanism  
 
The biosorption process has great potential to treat many 

pollutants, including heavy metals, dye, pesticide, and 

organic pollutants (Michalak et al. 2013). Different 

mechanisms facilitate pollutants removal because of the 

complexity of the biosorbent structure (Fomina and 

Gadd 2014; Michalak et al. 2013). Understanding mech-

anisms of pollutant removal can be beneficial for the ap-

plication. The knowledge of mechanisms is significant 

in choosing the appropriate type of biosorbent and de-

termining the preparation methods and factors affecting 

removal efficiency (Singh et al. 2020; Yaashikaa et al. 

2021). The capacity of biosorbent is determined by the 

type of the material, surface morphology, surface struc-

ture, and the functional group of biosorbent (Noli et al. 

2019). 
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Table 4 The removal performance of metal ions by agro-industrial waste/agricultural residues 
Materials Treatments Heavy metal 

ions 
Adsorbent dos-
age 

Max. adsorption ca-
pacity/percentage re-
moval 

pH Drawbacks Refs 

Olive stone Chemically modified Pb(II) 10 g/L 38.02 mg/g 5 - Lignin content increases with 
H2SO4 treatment  

- The difference in the removal 
rate between acid and alkaline 
treatments is up to 15%  
 

(Martín-Lara et 
al. 2013) 
 

Sugarcane waste ash Hydrolysis and condensation re-
action 

Acid orange 8 
dye (AO8) 

150-200 mg/L 230 mg/g (90%) 5 - Impurities are present in the 
ash, thus further washing treat-
ment is required  

- Selection of adequate pre-treat-
ment is essential to reduce oper-
ation cost 

- Needs more in-depth studies for 
testing its quality as biosorbent 
 

(Rovani et al. 
2018) 

Brewer’s spent grain Oxidation process U(VI) 900 mg/L 297.3 mg/g 4.7 - Non-porous material  
- Depends on the irregular shape 

of the surface capacity 
 

(Su et al. 2021) 
 

Uncommon crops 
(Coffea arabica fruit en-
docarp, coconut fruit 
endocarp, Eichhornia 
crassipes weed (EC), 
and Guadua angustifolia 
plant) 
 

Physically treated Ni(II) and 
Cd(II) 

0.15 g/25 mL 74.31% (Ni(II)) 
 95.77% (Cd(II)) 

6.6±0.2 - High lignin content hinders the 
extraction of biosorbent.  

- Salts solubilization and another 
complexity organic extractive 
may present 

(Correa et al. 
2012) 

Buckwheat hulls Acid treatment (hydroxylethyl-
idenediphosphonic acid) 

Au(III) 10 mg/100 mL 450.45 mg/g 2.9 Needs intensive maintenance on 
pH and temperature to control 
its ions exchange 
 

(Yin et al. 
2012) 

Olive stone Chemically treated Pb(II) 10 g/L 36.55% - Preferable use alkaline chemical 
treatment than acid to degrade 
the lignocellulose materials 
 

(Ronda et al. 
2015) 
 

Buckwheat hulls Physically treated Au(III) 1.0 g/L 422.52 mg/g 3.5 Adjustment for the initial pH of 
pollutant is needed to meet the 
sorption capacity 
 

(Deng et al. 
2014) 
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Materials Treatments Heavy metal 
ions 

Adsorbent dos-
age 

Max. adsorption ca-
pacity/percentage re-
moval 

pH Drawbacks Refs 

Corn stalk Physically & chemically treated Methylene 
blue (MB) and 
crystal violet 
(CV) 

0.25 g/L 566.27 mg/g 5-10 Contains high cellulose crystals 
aggregation may inhibit the effi-
cacy 

(Peng et al. 
2021) 

Corncob A low temperature hydrothermal 
method (453 K) 

Fe(III) 1 g/L 163.93 mg/g - Interaction between Nano-Fe3O4 

may reduce the pore diameter 
and volume 

(Ma et al. 
2015) 

Coffee husk Physically and chemically treated Pb2+ and Cd2+ 10 - 500 mg/L 89.6% (Pb2+) 
81.5% (Cd2+) 

2.0-7.0 - Could not operate well under 
low pH (2.0 – 5.0)  

- Could not work effectively 
when the initial concentration 
exceeded 500 ppm 

(Quyen et al. 
2021) 

Wheat straw 
 

Physically and chemically treated Cd2+ 1 g/L 46.18 g/mg 2-11 Not suitable for pH < 8 and low 
temperature (278 K or 4.85 °C) 
 

(Zheng et al. 
2021) 

Peanut husk powder Physically and chemically treated Pb2+, Mn2+, 
Cd2+, Ni2+, and 
Co2+ 

6.5 g/L 99% (Pb+2) 
62% (Cd+2) 
30% (Co+2) 
45% (Mn+2) 
38% (Ni+2) 
 

6 Working at high dose (1- 5 ppm) 
and low pH (3- 6) 

(Abdelfattah et 
al. 2016)  

Almond shell Physically treated Pb(II), Cu(II) 1 g/100 mL 9.0 mg/g (Cu(II)) 
13.7 mg/g (Pb(II)) 

5 Preferable use alkaline chemical 
treatment than acid to degrade 
the lignocellulose materials 

(Ronda et al. 
2015) 
 

Corn silk Physically treated Pb2+ 1 g/L 90 mg/g 2.0 - 6.0 - Low absorption capacity at low 
pH value  

- Needs higher initial concentra-
tion of heavy metal 

(Petrović et al. 
2016) 
 

Tomato waste and apple 
juice residue 

Alkali treatment Pb(II) 0.0125 - 0.1250 
g 

152 mg/g (tomato 
waste) 
108 mg/g (apple juice 
residue) 
 

2.0 - 10.0 - Not preferable at pH < 4 
- Need more activation through 

NaOH treatment 

(Heraldy et al. 
2018) 
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Materials Treatments Heavy metal 
ions 

Adsorbent dos-
age 

Max. adsorption ca-
pacity/percentage re-
moval 

pH Drawbacks Refs 

Mangifera indica 
(mango) seed shell pow-
der 

Chemically treated Pb(II) ATMS dose: 1 
g/L,  
CFMS dose: 0.5 
g/L 

59.35 mg/g (alkali 
treated mango bio 
sorbent/ATMS) 
306.33 mg/g (carboxyl 
functionalized mango 
biosorbent/ CFMS) 
 

5.2 Not applicable for the lower 
lead pollutant concentration 

(Moyo et al. 
2017) 

Tea waste Chemically treated Fluoride 0.4 - 8.0 g/L 3.83 mg/g (untreated 
tea) 
10.47 mg/g (Tea-Fe) 
13.79 mg/g (Tea-Al) 
18.52 mg/g (Tea-Al -
Fe) 
 

2.0 - 11.0 Could not effectively work at 
concentration pollutant < 50 
ppm and pH > 9 

(Cai et al. 
2015) 

Corn stover  Chemically and physically 
treated 

Fluoride 1 - 100 mg/L 6.42 mg/g 2.0 Could not work well at base pH 
and low temperature condition 
 

(Mohan et al. 
2014) 

Activated bagasse car-
bon (ABC), sawdust 
raw (SDR), and wheat 
straw raw (WSR) 
 

Chemically and physically 
treated 

Fluoride 4 g/L 56.4% (ABC) 
49.8% (SDR)  
40.2% (WSR) 

6.0 - pH 6 -7 is the minimum re-
quirement to fulfill the absorp-
tion capacity  

- pH > 7 reduced the efficiency  
 

(Yadav et al. 
2013) 

Black tea waste Alkali treatment Cu(II) - 43.18 mg/g > 7.0 Not optimum at acidic pH con-
dition 

(Weng et al. 
2014) 
 

Spent seedcake of 
Calophyllum inophyllum 
(SSCI) 

Chemically and physically 
treated 

Pb(II), Cd(II), 
and Zn(II) 

10 g/L 52.63 mg/g (Pb(II)) 
51.28 mg/g (Cd(II))  
17.99 mg/g (Zn(II)) 
 

9.0 - Could not operate in acidic pH  
- The absorbent capacity de-

creased at dosage above 10 ppm 
 

(Adenuga et al. 
2019) 

Olive pomace and chi-
tosan 

Chemically and physically 
treated 

Pb(II) 400 mg 19.86 mg/g 2.0 - 5.5 At pH > 5.5 reduced the re-
moval rate at pH value 
 

(Sayin et al. 
2021) 
 

Moringa oleifera seed 
husk (MOSH) and 
Moringa oleifera seed 
pulp (MOSP) 
 

Chemically and physically 
treated 

Acid Blue 9 
(AB9) syn-
thetic dye 

0.5 g/L 329.5 mg/g (MOSH) 
694.2 mg/g (MOSP) 

2.2 pH<3.81 (MOSH), pH<6.08 
(MOSP) is not suitable for this 
biosorbent  
 

(dos Santos 
Escobar et al. 
2021) 
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Materials Treatments Heavy metal 
ions 

Adsorbent dos-
age 

Max. adsorption ca-
pacity/percentage re-
moval 

pH - Drawbacks Refs 

Dead leaves of Prunus 
Dulcis 

Alkali treatment Acid green 25 
dye 

2.14 g/L 28.57 mg/g 2 - Needs acidic pH condition 
- The feedstock supply depends 

on seasonal 

(Jain and 
Gogate 2018) 
 

Zea mays waste Chemically and physically 
treated 

Oxybenzene 0.5 - 2.0 mg >90% 5.0 - 6.0 Needs acidic pH to have an ef-
fective absorption rate 
 

(Lakshmi et al. 
2021) 

Orange peels Physically treated Ammonia and 
nitrate 

4 gm 100% 5.5 Effective load is at fresh condi-
tion, thus need large storage (i.e. 
high operational cost) and the 
feedstock availability 
 

(Dey et al. 
2021) 

Pomegranate peel and  
orange juice by-product 

Physically treated Phenolic com-
pounds 

0.01 - 0.02 g/mL 93.13% (pomegranate 
peel) 
89.59% (orange juice 
by-product) 
 

4.0 - 7.0 - Efficiency of adsorption not 
well works at a pH > 4.75  

- The particle size > 0.373 mm 
reduced the removal efficiency 

(Ververi and 
Goula 2019) 

Lemon peel Chemically and physically 
treated 

Ni(II) 5 g/L 36.74 mg/g 5.0 - pH 5 is the minimum require-
ment and pH > 5 did not give 
any differences capacity of ab-
sorption 

- Needs more acid chemicals/so-
lutions as at pH ≤ 2 showed the 
highest removal efficiency 

(Villen-
Guzman et al. 
2019) 
 

Litchi peel (LP),  
orange peel (OP),  
pomegranate peel (PP), 
and banana peel (BP) 

Physically treated Cd(II) 10 g/L 230.5 mg/g (LP) 
170.3 mg/g (OP) 
132.5 mg/g (PP) 
98.4 mg/g (BP) 

5.0 - Not conducive when reached 
the pH value of 5 

- Need acidic pH condition 

(Chen et al. 
2018) 

Pine (Pinus halepensis) 
sawdust 

Physically treated Cu, Pb 10 g/L 60% (Cu removal) 
80% (Pb removal) 

5 - 8 (Pb)  
7 (Cu) 
 

At pH > 7 reduced the removal 
rate capacity 

(Semerjian 
2018) 

Cucumber peel Physically treated Lead 1.0 g 133.60 mg lead 5.0 At pH <5 reduced the removal 
rate capacity 

(Basu et al. 
2017) 
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Materials Treatments Heavy metal 
ions 

Adsorbent dos-
age 

Max. adsorption ca-
pacity/percentage re-
moval 

pH - Drawbacks Refs 

Papaya peel  Chemically and physically 
treated 

Pb(II) 100 mg 93% 5.0 - High dose of absorbent is re-
quired for effective removal. 

- It is not economically viable, 
thus more modification is re-
quired to handle this issue 

(Abbaszadeh et 
al. 2016) 
 

Corn cob and chestnut 
shell 

Chemically and physically 
treated 

Pb(II), Cu(II), 
Cd(II) 

0.1 - 0.5 g/L 166.39 mg/g (corn cob 
modified) 
124.84 mg/g (chestnut 
shell) 

5.0 - Biosorbent cannot work well at 
pH below 5 

- The acidic condition did not en-
hance the binding reaction 

(Chen et al. 
2021) 

Sugarcane bagasse (SB), 
rice husk (RH), and cas-
tor leaves (CL) 

Chemically and physically 
treated 

Pb(II), Ni(II) 50 - 300 mmol/L Pb(II): 1180, 948, 802 
mmol/kg for SB, RC, 
and CL 
Ni(II): 810, 698, 432 
mmol/Kg for SB, RC, 
and CL 

5.0 - RH and SB has lower pore dis-
tribution than CL 

- SB has the lowest absorption 
capacity 

(Saxena et al. 
2017) 
 

Wheat bran and modi-
fied wheat bran, egg-
shell powder, calcined 
egg shell 

Chemically and physically 
treated 

Chromium - 64% (eggshell) 
70.19% (calcined egg 
shell) ;75.89% (wheat 
bran); 96.96% (modi-
fied wheat bran) 

- Needs longer contact time (i.e. 5 
hrs) for higher chromium re-
moval 

(Renu et al. 
2017) 

Terminalia catappa shell 
 

Chemically and physically 
treated 

Methylene 
blue (MB) 

0.8 g/L 88.62 mg/g 5.0 - Did not operate well at pH 
value of 4-5  

- The particle size must not ex-
ceed of 36 mm 

(Hevira et al. 
2021) 

Fallen leaves of Ficus 
racemose 

Chemically and physically 
treated 

Acid violet 17 
dye 

3 g/L 45.25 mg/g (untreated 
biosorbent) 
61.35 mg/g (H2SO4 ac-
tivated biosorbent) 
119.05 mg/g (NaOH 
activated biosorbent) 

2.0 - Needs acidic pH condition 
- The feedstock supply depends 

on seasonal 

(Jain and 
Gogate 2017) 

Palm-oil shells waste Chemically and physically 
treated 

Phenol > 0.8 g 98% - - Particle size > 0.85 mm reduces 
the phenol removal efficiency  

- Needs base pH condition 
(Buhani et al. 2018) 

(Sahu et al. 
2021) 

Leaves and saw dust of 
neem tree 

Physically treated Chromium 12 - 20 g/L ~99% 1.0 - Needs very acidic pH condition 
- The feedstock supply depends 

on seasonal 

(Aggarwal and 
Arora 2020) 
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Table 5 The removal performance of nitrate, phosphorous, pesticide, pharmaceuticals, and salinity by agro-industrial waste/agricultural residues 
Materials Treatments Type of pollutants 

removed  
Adsor-
bent dos-
age 

Max. adsorption ca-
pacity/percentage re-
moval 

pH Drawbacks Refs. 

Nitrate removal 
Potato peel (PP) Physically and ther-

mally treated (i.e. 
pyrolysis). With and 
without combina-
tion with egg shell 
(ES) (at a ratio of 
1:2, ES:PP) 

Nitrate 1 g/L 53.80 - 62.10% (Com-
bined ES:PP) 

7.25 - The performance efficacy is depended 
on the wastewater characteristics 

- Longer contact time is needed (120 
minutes contact time) 

- May result in other compounds such 
as mixture of CaCO3 and apatite 

- High energy consumption for pyroly-
sis  

(Quisperima et al. 
2022) 

Rice husk resi-
due 

Physically and 
chemically treated. 

- Total nitrogen 
(TN) 

- Ammonium nitro-
gen (NH4

+–N) 

20 g/L - 84% (TN) 
- 100% (NH4

+–N) 
8.07 - Longer contact time is needed (120 

minutes contact time) 
- High dose of adsorbent was used 
- Large chemicals consumption for 

chemical activation (i.e. may increase 
operational cost) 

- Potential environmental impact from 
chemical usage 

(Luo et al. 2019) 

Fresh orange 
peels (Fop) 
 

Physically treated. 
Particle size 2.458 
µm (Fop) and 3.415 
µm (Sop) 

- Nitrate 
- Ammonia  

1, 2, 3, 4 
and 5 g in 
each 200 
mL 

- Nitrate removal: 100% 
(at addition of 2-5 g) 

- Ammonia removal: 
100% (at addition of 4 
and 5 g) 

5.5 - Longer contact time is needed (90 
minutes contact time) 

- High dose of adsorbent was used 
 

(Dey et al. 2021) 

Spent orange 
peels (Sop) 
Potato peels (PP) 
 

Physically and ther-
mally treated (i.e. 
pyrolysis). 

Nitrate 6 g/L (with 
contact 
time 0 - 
200 
minutes) 

7.1 mg/g (or 60.38%) 2, 3, 4, 
6, 8, 
10, and 
12 

- PP biosorbent was more effective at 
basic pH (8 - 10) 

- SB biosorbent was more effective at 
acid pH (2 - 4) 

- The process required longer contact 
time for higher adsorption efficiency 

(El-Nahas et al. 
2019) 

Sugarcane ba-
gasse (SB) 

3.9 mg/g (or 38.52%) 

Rice husk Physically (pyroly-
sis) and chemically 
treated. 

Nitrate 1 g/L 8.11 mg/g - - The making process of biosorbent is 
complex and expensive  

- High energy consumption for pyroly-
sis  

- Large chemicals consumption for 
chemical activation (i.e. may increase 
operational cost) 

- Potential environmental impact from 
chemical usage 

 
 
 

(Satayeva et al. 
2018) 
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Materials Treatments Type of pollutants 
removed  

Adsor-
bent dos-
age 

Max. adsorption ca-
pacity/percentage re-
moval 

pH Drawbacks Refs. 

Sugarcane ba-
gasse  

Physically and 
chemically treated. 

Nitrate 5 - 40 mg/L 
(at 5 mg in-
crement) 

100% (at 5 mg/L) 
96.90% (at 10 mg/L) 

4.0 - Increasing dosage of biosorbent (>10 
mg/L) reduce the adsorption effi-
ciency 

- The process is highly pH-dependent   
- Large chemicals consumption for 

chemical activation (i.e. may increase 
operational cost) 

- Potential environmental impact from 
chemical usage 

(Schwantes et al. 
2015) 

Solid olive waste 
 

Physically and 
chemically treated. 

Nitrite ions 5 g/L - 67.50% (Chemical ac-
tivation with zinc chlo-
ride) 

- 13.50% (Chemical ac-
tivation with phos-
phoric acid) 

- 11.75% (without car-
bonization and activa-
tion) 

- 6.75% (carbonized 
without activation) 

4.5 - 5 - The process is highly pH-dependent, 
which more effective at acid pH 

- Longer contact time needed (at 60 
minutes) 

- Large chemicals consumption for 
chemical activation (i.e. may increase 
operational cost) 

- Potential environmental impact from 
chemical usage 

 

(Zyoud et al. 
2015) 

Phosphorous removal 
Potato peel (PP) Physically and ther-

mally treated (i.e. 
pyrolysis). With and 
without combina-
tion with egg shell 
(ES) (at a ratio of 
1:2, ES:PP) 

Phosphorous (P) 1 g/L 85.90 - 91.60% (Com-
bined ES:PP) 

7.25 - The performance efficacy is depended 
on the wastewater characteristics 

- Longer contact time is needed (120 
minutes contact time) 

- May result in other compounds such 
as mixture of CaCO3 and apatite 

- High energy consumption for pyroly-
sis 

(Quisperima et al. 
2022) 

Pomegranate 
peel 

Physically and 
chemically treated. 
Commixing with 
LaCl3·7H2O 
(10 mmol) and 
NiCl2·6 H2O 
(5 mmol) using sol-
vothermal process 

Phosphate (PO4) 0.5 g/L 226.55 mg/g (or 97.14% 
for 700 minutes contact 
time) 

2.35 - 
10.84 

- Higher weight lost at temperature 
>160 oC 

- The process efficacy reduced at pH > 
7.38 or pH < 4.44 

- Large chemicals consumption for 
chemical activation (i.e. may increase 
operational cost)  

- High energy consumption for com-
mixing process (i.e. solvothermal) 

(Akram et al. 
2022) 

Pomegranate 
peel  

Physically and 
chemically treated. 
Commixing with 
LaCl3·7H2O 
(10 mmol) and 
FeCl3·6 H2O 
(5 mmol)  

Phosphate (PO4) 0.5 g/L 13.91 mg/g (Fe/Peel) 
38.86 mg/g (La/Peel) 
44.50 mg/g (Fe-La/Peel) 

3 - 10 - The process is highly pH-dependent, 
which more effective at pH of 2.91 

- The biosorbent has lower regeneration 
efficacy 

- Large chemicals consumption for 
chemical activation (i.e. may increase 
operational cost) 

(Akram et al. 
2021) 
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Materials Treatments Type of pollutants 
removed  

Adsor-
bent dos-
age 

Max. adsorption ca-
pacity/percentage re-
moval 

pH Drawbacks Refs. 

Okara (soybean 
milk residues) 

Physically and 
chemically treated. 

Phosphate (PO4) 1, 2, 3, 5, 
7, 10, and 
12 g/L 

44.00 mg/g or 95% (dose 
10 mg/L, 30 min, pH of 2 
- 6) 

2 - 12 - The process is more effective at acid 
pH (2 - 6) 

- At pH > 11 reduce the process effi-
cacy due to strong competition of 
phosphate species and OH− anions 

- Large chemicals consumption for 
chemical activation (i.e. may increase 
operational cost) 

- Potential environmental impact from 
chemical usage 

(Nguyen et al. 
2014) 

Apple peel Physically and 
chemically treated. 

Phosphate (PO43-) 10 g/L 20.35 mg/g (or 100% at 
pH 2) 

2 - 12 - The process is more effective at pH of 
2 

- Large chemicals consumption for 
chemical activation (i.e. may increase 
operational cost) 

- Potential environmental impact from 
chemical usage 

(Mallampati and 
Valiyaveettil 
2013) 

Coconut shell fi-
ber 

Physically and 
chemically treated. 

- Phosphate (PO43-) 
- Sulfate (SO4

2−)  
- Nitrate (NO3

−) 

10 g/L 200 mg/g (phosphate) 
31.2 mg/g (sulfate) 
33.7 mg/g (nitrate) 

5 - Large chemicals consumption for 
chemical activation (i.e. may increase 
operational cost) 

- The biosorbent has low adsorption 
constant and recyclability capacity 
than anionic resin 

(de Lima et al. 
2012) 

Pesticide removal 
Delonix re-
gia seeds 

Physically and 
chemically treated. 
The resulted bio-
sorbent was applied 
with P. stutzeri bio-
mass (at ratio of 
2:1) 

Chlorpyrifos 25, 50, 75 
and 100 
mg/L 

95.29% (in soil and wa-
ter) 

7.0 - Temperature > 30 oC and pH > 7 may 
reduce the removal efficiency 

- The process is more complex to pre-
pare mixed biosorbent 

- Large chemicals consumption for 
chemical activation (i.e. may increase 
operational cost) 

- Potential environmental impact from 
chemical usage 

(Saravanan et al. 
2022) 

Potato peel Physically and ther-
mally treated (i.e. 
pyrolysis). 

Chlorpyrifos 1, 2, 5, 10 
g/L 

46.02 (at 1 g/L) 5 - The process is highly pH-dependent 
(more effective at acid pH) 

- The efficacy of the biosorbent was 
gradually decreased in hemolysis in 
24 h 

- High energy consumption for pyroly-
sis 

(Singh et al. 2022) 
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Materials Treatments Type of pollutants 
removed  

Adsor-
bent dos-
age 

Max. adsorption ca-
pacity/percentage re-
moval 

pH Drawbacks Refs. 

Maucaba waste 
(maucaba endo-
carp) 

Physically (pyroly-
sis) and chemically 
treated.  

Atrazine  0.1 g/50 
mL 

90 - 98% - - The making process of biosorbent is 
highly expensive  

- High energy consumption for pyroly-
sis  

- Large chemicals consumption for 
chemical activation (i.e. may increase 
operational cost) 

- Potential environmental impact from 
chemical usage 

(Vieira et al. 2021) 

Olive mill resi-
due 

Physically treated - Imazalil (Im) 
- Thiabendazole (T) 

0.1 g/100 
mL 

9 mg/g (Im); 
8.6 mg/g (T) 

7 - Type of biosorbent is highly influence 
the performance 

- High dose of adsorbent was used  

(Fernández-López 
et al. 2021) 

Artichoke waste 1.9 mg/g (I);6.6 mg/g (T) 

Citrus waste 6.6 mg/g (I); 6.1 mg/g (T) 
De-oiled Ka-
ranja seed cake 

Physically and 
chemically treated. 

2,4,6-Trichloro-
phenol 

0.02, 0.03, 
and 0.04 
g/L 

74% or 124 mg/g 2, 6, 
and 10 

- Higher temperature was found to re-
duce the process’s efficacy 

- High pH (10) reduced the adsorption 
efficiency 

- The process was highly influence by 
pH, initial concentration, adsorbent 
loading, and adsorbent’s particle size 

- Large chemicals consumption for 
chemical activation (i.e. may increase 
operational cost) 

- Potential environmental impact from 
chemical usage 

(Aniya et al. 2021) 

Eucalyptus bark Physically treated - Atrazine (A) 
- Imidacloprid (I) 

30 mg/mL 83.80 – 88.80% (A) 
70.40 – 75.40% (I) 

- - Type of biosorbent is highly influence 
the performance  

- High dose of adsorbent was used 
 
 
 
 

(Mandal et al. 
2017) 

Corn cob 43.50 – 67.60% (A) 
43.70 – 55.00% (I) 

- 

Bamboo chips 48.00 – 58.70% (A) 
53.80 – 87.20% (I) 

- 

Rice straw 42.20 – 48.50% (A) 
33.60 – 39.40% (I) 

- 

Rice husk 42.20 – 57.70% (A) 
50.70 – 58.80% (I) 

- 

Apple shell  
 

40.08 mg/g (for 2,4-DP) 
17.86 mg/g (for 2,4-D) 
25.64 mg/g (for 2,4-DB) 

6.0 

 
Orange peel 

22.71 mg/g (for 2,4-DP) 
34.48 mg/g (for 2,4-D) 
23.25 mg/g (for 2,4-DB) 
 
 
 

 
6.0 
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Materials Treatments Type of pollutants 
removed  

Adsor-
bent dos-
age 

Max. adsorption ca-
pacity/percentage re-
moval 

pH Drawbacks Refs. 

Banana peel 33.26 mg/g (for 2,4-DP) 
22.73 mg/g (for 2,4-D) 
21.27 mg/g (for 2,4-DB) 

7.0 

Pharmaceutical compounds removal 
Tomato waste 
(TW) 

Physically treated - Praziquantel 
(PRAZ) 

- Febantel (FEBA) 
- Procaine (PROC) 
- Dexamethasone 

(DEXA) 
- Tylosin tartrate 

(TYL) 

100 g/L 449 µg/g (PRAZ) 
524 µg/g (FEBA) 
1230 µg/g (PROC) 
461 µg/g (DEXA) 
677 µg/g (TYL) 

4.58 - Longer contact time is needed (at 24 
hrs contact time) 

- High dose of biosorbent was used 
- Reduced performance efficacy due to 

the ’salting out’ effect of the surface of 
TW biosorbent 

(Mutavdžić 
Pavlović et al. 
2021) 

Maple leaves 
(ML) 

Physically treated Ciprofloxacin 0.5 – 1.5 
g/20 mL 
(with 0.5 g 
increment) 

519.84 – 2773.10 mg/g 3-11 - The process was highly influence by 
pH 

- Optimum performance at pH of 3 and 
11 

- The lowest adsorption capacity from 
TP was due to its smallest surface area 

(Tolić et al. 2021) 

Tomato waste 
(seeds and peel)  

60.57 – 97.05 mg/g 

Tangerine peel 
(TP) 

30.21 – 77.08 mg/g 

Coconut husk Physically and 
chemically treated. 

2-(4- Isobutyl 
phenyl) propanoic 
acid (or known as 
Ibuprofen) 

1 g/L 76.92 mg/g - - Large chemicals consumption for 
chemical activation (i.e. may increase 
operational cost) 

- Longer contact time is needed (at 60 
minutes contact time) 

(Bello et al. 2020) 

Peanut shell bio-
char (PSB) 

Physically and ther-
mally treated (i.e. 
pyrolysis alone 
(800-PSB) or com-
bined with hydro-
thermal carboniza-
tion (190-800-PSB 
and 800-800-PSB)) 

Naproxen 0.5 g/L - 105 mg/g at pH 8.91 
(800-PSB)  

- 215 mg/g at pH 8.80 
(190-800-PSB) 

- 324 mg/g at pH 9.15 
(800-800-PSB) 

3 - 11 - Optimum performance under basic pH 
- Large chemicals consumption for 

chemical activation (i.e. may increase 
operational cost) 

- The potential of micropore blocking 
due to naproxen adsorption  

-  High energy consumption  

(Tomul et al. 
2020) 

Soybean husk Physically and 
chemically treated. 

Ibuprofen  20 g/L 50 mg/g  4.75 - High dose of adsorbent was used 
- Large chemicals consumption for 

chemical activation (i.e. may increase 
operational cost) 

(Bello et al. 
2019b) 

Banana peel Physically treated - Salicylic acid (SA) 
- Benzoic acid (BA) 

1.25 - 4.00 
g/50 mL 
(with 0.25 
-0.50 g in-
crement) 

61.55 % (SA) 
77.59% (BA) 

2 - 11 - Longer contact time is needed (at 720 
and 840 minutes for BA and SA) 

- Optimum performance at pH of 3 
- The process efficacy reduced at pH > 

3 
- High dose of biosorbent was used 
- Both biosorbent has low adsorption 

capacity 

(Pathak et al. 
2016) 
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Materials Treatments Type of pollutants 
removed  

Adsor-
bent dos-
age 

Max. adsorption ca-
pacity/percentage re-
moval 

pH Drawbacks Refs. 

Rice straw (RS) Direct use of rice 
straw and gypsum, 
then mixed with top 
soil. Leachate was 
used as wastewater 

- Electrical Conduc-
tivity (EC) 

- Cations (i.e. Ca2+, 
Mg2+, K+, and Na+) 

n.a. Improved salt-leaching ef-
ficiency: 
- EC was reduced by 

80.19% 
- Ca2+ reduced by 69.85% 
- Mg2+ reduced by 81.03% 
- K+ reduced by 22.07% 
- Na+ reduced by 86.48% 

7.80 - 
8.95 

- Use of RS alone did not have higher 
efficacy than mixed RS+G 

- Addition of gypsum improved perfor-
mance, but may increase chemicals 
consumption hence the operation cost 

(Ebrahim Yahya et 
al. 2022) 

Rice straw with 
gypsum (RS+G) 

1.4 RS 
added 
with 0.005 
kg G  

Improved salt-leaching ef-
ficiency: 
- EC was reduced by 

92.01% 
- Ca2+ increased by 

519.12% 
- Mg2+ reduced by 75.26% 
- K+ reduced by 24.14% 
- Na+ reduced by 96.47% 

Coconut shell 
(CS) 

Physically treated Electrical conductiv-
ity  

CS adsor-
bent was 
placed in 
the col-
umn 
(Ø=10.10 
cm) with 
50 cm 
thickness 

After 2 hours, EC reduced 
from:  
- 6,132 ȝS/cm to ~1500 

ȝS/cm (100% urine sol.) 
- 4,682 ȝS/cm to ~1750 

ȝS/cm (50% urine sol.) 
- 4,035 ȝS/cm to ~2000 

ȝS/cm (20% urine sol.) 

8-9.5 - After 16 hrs contact time, EC in-
creased to the initial value 

- CS biosorbent was not highly efficient 
because the effective adsorption of 
dissolved salt (i.e. EC) only occurred 
at 2 hrs of contact time  

(Nguyen et al. 
2021) 

Wheat straw Physically treated Sodium 0.3, 0.5, 
0.7, 1.0, 
1.3, and 
1.6 g/40 
mL 

90.43% (at dose > 0.5 g/40 
mL) 

3-8 - Best performance at pH 5 
- Adsorption rate was almost constant 

after 30 minutes contact time 
- Increasing initial concentration of so-

dium solution reduced adsorption ca-
pacity  

(Rasouli et al. 
2020) 

Rice husk   90.37% (at dose > 0.5 g/40 
mL) 

Pine wood (PW) Physically and 
chemically treated. 
Modification of 
hemicellulose (HC) 
extraction using 
DTPA, and chitosan 
(CS) was added to 
improve saline ad-
sorption.  

NaCl (0.3% and 
0.9%) 

0.4 g/L HC−DTPA− CS, PW: 
- 19 g/g (0.3% NaCl) 
- 27 g/g (0.9% NaCl) 

3.9 - Increasing temperature increases the 
NaCI adsorption 

- Large chemicals consumption for im-
proving performance efficacy  

  

(Ayoub et al. 
2013) 

Switch grass 
(SG) 

HC−DTPA, SG: 
- 3 g/g (0.3% NaCl) 
- 5 g/g (0.9% NaCl) 
HC−DTPA− CS, SG: 
- 23 g/g (0.3% NaCl) 
- 27 g/g (0.9% NaCl) 

Coastal ber-
muda grass 
(SBG) 

HC−DTPA− CS, CBG: 
- 23 g/g (0.3% NaCl) 
- 28 g/g (0.9% NaCl) 
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Heavy metals 

 
The biosorption process for heavy metal removal fol-

lowed some of the mechanisms, for instance, ion ex-

change, adsorption, complexation, chelation, and pre-

cipitation (Agarwal et al. 2020). The mechanisms pre-

sent in the heavy metal biosorption process depend on 

the functional groups of biosorbent. This functional 

group attracts metal ions towards its surface. The func-

tional groups found in agricultural waste biosorbent 

are hydroxyl, carboxyl, amide, amine, imine, phos-

phates, hydroxyl, carbonyl, sulfhydryl, and phenolic 

group (Rao and Khan 2009; Yuvaraja et al. 2014). The 

biosorption process of heavy metals always includes 

interaction between two or more mechanisms. It is 

quite rare to find just one particular mechanism be-

cause of the complex chemistry involved. The heavy 

metal removal efficiency was affected by temperature, 

pH, contact time, sorbent dose, initial metal concentra-

tion, and stirring rate (Beni and Esmaeili 2020; Rao 

and Khan 2009; Song et al. 2017). Heavy metals bio-

sorption followed two general steps. The first step is 

the movement of heavy metals in solution caused by 

physical attraction of heavy metals to the surface of a 

biosorbent that has a negative charge. The second step 

is the transfer, followed by the bonding between the 

dissolved component from the biosorbent surface and 

the active sites (Beni and Esmaeili 2020; Noli et al. 

2019).   

 

Ion-exchange 

 

Ion exchange is reported as the main mechanism in-

volved in heavy metal biosorption. An ion-exchange 

reaction occurs between ions on the surface of the bi-

osorbent with heavy metal ions in the solution. Metal 

ions such as Cu(II), Pb(II), Cd(II), Ni(II), Dy(III), 

Zn(II), Fe(III), Cr(III), Mn (II), Co(II), Hg(II), Ag(I), 

Th(IV), U(II) and U(VI) can be removed from 

wastewater through this mechanisms. The general re-

action of the ion-exchange mechanism of heavy metal 

is illustrated by the equation (Agarwal et al. 2020; 

Singh et al. 2020): 

 
MX+ + X(CD) ļ XC+ + MDX  

 

Where MX+ = heavy metals ion, MDX = sorbed MX+, 

and CD = a number of acid sites on the surface of bio-

sorbent (Agarwal et al. 2020; Zhou et al. 2016).  

In a study of heavy metal biosorption through ion-ex-

change mechanisms, the residue from brown seaweed 

alginate extraction has been used for cadmium re-

moval. Light metals such as Ca, Mg, Na, and K are 

present in the biosorbent surface. The ion-exchange 

mechanism is linked with the carboxyl group involv-

ing mainly Ca ions since Ca content decreases while 

Cd ions appear after biosorbent contact with Cd solu-

tion. These reactions were also proved with the depo-

sition of calcium compounds. Though ion exchange is 

the main mechanism, it also includes other mecha-

nisms such as complexation and chelation (Nishikawa 

et al. 2020). Another study that removed Copper using 

Macrocystis pyrifera as biosorbent revealed an ion-ex-

change mechanism between Ca and Mg with Cu(II). 

As a primary mechanism, ion exchange accounted for 

56% of the total Cu(II) bound to the surface of the bi-

osorbent (Cid et al. 2020).  

 
Adsorption 

 
Adsorption is not a predominant mechanism found in 

biosorption compared with other mechanisms. The ad-

sorption mechanism can be distinguished into two dif-

ferent processes based on the forces, physical adsorp-

tion, and chemical adsorption. Heavy metals ions such 

as Cu(II), Zn(II), Cr(III), Cr(IV), Cd(II), Pb(I), Pb(II), 

Dy(II), Fe(III), Ag(I), Ni(II) are reported undergo 

physical adsorption mechanism. A reversible reaction 

via van der Waals forces mediates the weak binding of 

biosorbent surface with heavy metals. However, some 

studies reported this adsorption as a primary mecha-

nism for their heavy metal removal. An example was 

reported for Cu(II) removal from wastewater using 
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rubber leaf powder as a biosorbent. The adsorption 

mechanisms favor low temperature since high temper-

atures cause Cu (II) ions to escape from the biosorbent 

surface to the solutions. Other factors such as pH, ini-

tial metal concentration, biosorbent dosage, and parti-

cle size also affect adsorption (Wan Ngah and 

Hanafiah 2008). From the thermodynamic point of 

view, this adsorptions mechanism is an exothermic re-

action with a negative value of enthalpy change and 

spontaneous reaction since it has negative Gibb’s free 

energy (Al-Anber and Matouq 2008). The chemical 

adsorption mechanism is a non-spontaneous and endo-

thermic reaction, unlike physical adsorption. The 

chemical adsorption was a dominant mechanism in re-

moving Ni(II) using Litchi chinensis seeds as bio-

sorbent. Ni(II) formed a strong chemical bond with the 

active sites on the biosorbent surface. This reaction 

needs an input of energy for the forming chemical 

bond to take place (Flores-Garnica et al. 2013). Other 

heavy metals reported removed by chemical adsorp-

tions are Cr(IV), Pb(II), Cd(II), and Zn(II) (Amar et al. 

2020; Oliveira et al. 2021). 

 
Surface precipitation 

 
The surface precipitation mechanism generally occurs 

when the heavy metals concentration exceeds the bio-

sorbent capacity. Insoluble heavy metal hydroxides 

and oxides formed on the surface of the biosorbent as 

precipitation took place. The accumulation of heavy 

metals will be possible when there is a negative charge 

on the surface of the biosorbent (Schneider et al. 

2001). Removal of some heavy metals such as Cr(III), 

Cu(II), Cd (II), U(VI), La(III), Sm(III) were reported 

to implicate surface precipitation as one of the bio-

sorption mechanisms. A study using soybean meal 

waste as biosorbent revealed that surface precipitation 

takes place when the Cr(III) and Cu(II) ion concentra-

tion increases exceeding the capacity of binding the 

functional groups in the biosorbent surface. The kinet-

icity of this precipitation reaction is much slower com-

pared with other mechanisms (Witek-Krowiak and 

Reddy 2013). Another study using Aloe vera wastes 

treating U(VI) and Cd(II) reported the occurrence of 

the surface precipitations mechanism along with ion 

exchange and physical sorption facilitated by car-

boxyl, carbonyl, and hydroxyl functional groups (Noli 

et al. 2019). 

 
Complexation 

 
The heavy metal complexes consist of metal ions as a 

center bound to one or more ligands. The formation of 

a heavy metals complex in the biosorption process re-

quires electron sharing between heavy metals and 

functional groups of biosorbent as ligands. The central 

metal coordinated by ligands can be one single metal 

(mononuclear) or more (polynuclear). These mecha-

nisms reported playing a role in several heavy metals 

removal (Cr(IV), Pb(II), Zn(II), Cu(II), Ag(I), Tb(III), 

Th (IV), La(III), Sm(III)) though not necessarily as the 

main mechanism (Krishnani et al. 2008; Lu and Guo 

2019; Noli et al. 2019). Biosorbent derived from rice 

husk contain lignin and cellulose in the biomatrix 

bearing carboxyl, alcohol, and ketones functional 

groups. These functional groups act as ligands and 

form complexes with Ni(II) and Cu(II) (Krishnani et 

al. 2008). Another study used the walnut shell to treat 

Pb(II). A modification of walnut shell using xanthate 

led to the higher adsorption performance caused by 

better complexation and ion exchange. Formation of 

the complex increases because of xanthogenization of 

walnut shell grafted sulphur-containing functional 

groups on the walnut shell surface. Based on the XPS 

and FTIR analysis, the sulfhydryl group (-SH) reacts 

as ligands and makes a complex with lead ions (Lu and 

Guo 2019).  

 
Chelation 
 
Chelation is a binding reaction of organic molecules 

(ligands) and metals ions to form a complex ring-like 

structure. As a chelating agent, the ligand formed a co-

valent and coordination linkage with the metal’s ion. 

Several atoms like S, N, and O are commonly found to 
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be an active site of the functional groups, such as 

RCOO-, -SH, S-S, OH, P(=O) (OR)3, and NH3 (Flora 

and Pachauri 2010). Among several functional groups, 

NH3 has the highest effectiveness for heavy metals re-

moval, caused by the combination of the chelation pro-

cess with electrostatic interaction and hydrogen bond-

ing (Arief et al. 2008).  

Chelation’s mechanisms are affected by both metal’s 

ion and chelating agent’s properties. Occupation of 

more of the coordination points of metals ion increases 

the stability of the complex formed. Metals ions like 

Cr(III), Cr(IV), Cu(II), Pb(II), Cd(II) form a stable 

structure with chelation agents by the formation of 

multiple bonding (Bulgariu and Bulgariu 2018; Mata 

et al. 2009). A recent study employs a chelation mech-

anism to remove heavy metals using soy waste bio-

mass. Industrial sulphur chelating agents were used for 

biosorbent functionalization. The functionalization in-

creases the number and availability of functional 

groups responsible for the metal’s recovery. FTIR 

analysis showed that functionalization causes spatial 

reorientation of some functional groups like carboxyl, 

carbonyl, hydroxyl, and amino. Moreover, functional-

ization is also causing new sulphur-containing func-

tional groups (mainly Thiol groups) to appear. The 

performance of heavy metal removal for Pb(II), 

Cu(II), and Ni(II) has doubled after functionalization 

due to the increased affinity of biosorbent surface to 

heavy metals (Bulgariu and Bulgariu 2018). Chelation 

mechanism also reported in pectin gels biosorbent de-

rived from the sugar-beet pulp. The polymeric struc-

ture of the pectin gel is rich in a carboxyl group that 

acts as a chelating agent for Pb(II). FTIR spectra of 

pectin gel showed that the two carboxyl band distance 

decreased after being treated with led ions, indicating 

the chelation reaction occurrence (Mata et al. 2009). 
 
Dye 

 
Jawad et al. (2019) studied the mechanism of bio-

sorbent made of carbonized watermelon rind to re-

move methylene blue (MB) dyes in an aqueous solu-

tion. Their study found that there were three interac-

tions of the MB adsorption mechanism, including: 

1) electrostatic attractions between negatively 

charged functional groups on the biosorbent sur-

face area with positively charged MB cations;  

2) hydrogen bonding interaction between the surface 

hydrogen bonds available on biosorbent surface 

and the nitrogen atoms available on the MB; and  

3) ʌ–ʌ stacking interactions between aromatic rings 

of MB and the graphene framework of biosorbent.  

The different interaction routes influence the efficacy 

of MB dyes adsorption onto the surface of the bio-

sorbent. Such a mechanism was also reported in other 

studies (Fan et al. 2017; Jia et al. 2016; Liu et al. 2018; 

Üner et al. 2016). Liu et al. (2018) described that the 

adsorption mechanism of MB dyes molecules onto ac-

tivated carbon from tea waste was rather complex, in-

volving a fast- and slow-stage. The fast-stage is com-

posed of tea waste’s electrostatic ion exchange be-

tween MB and organic functional groups. At this 

stage, the adsorption can be achieved within 5 minutes 

contact time with the MB removal rate of 79%. At a 

slow-stage, which can be finished by the remaining 

time with the MB removal rate of 21%, was mainly 

due to the hydrogen bond or ʌ-ʌ stacking interaction 

between MB and tea waste. This study suggested that 

the electrostatic ion exchange was not the only mech-

anism in removing MB dyes. However, the organic 

functional groups derived from tea waste also played 

a critical part in MB adsorption onto tea waste. An-

other study by Ardekani et al. (2017) reported that the 

ultrasound-assisted removal method combined with 

activated carbon wood of cherry trees resulted in a sig-

nificant increase in the efficiency of the MB removal. 

Their study observed that an increase in pH and con-

tact time was responsible for decreasing the positive 

charge on the surface and increasing the number of 

negatively charged sites. Such conditions contributed 

to enhancing the MB removal mainly due to the elec-

trostatic ion exchange interactions.  
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Pesticide 

 
Bezerra et al. (2020) explained that removing herbi-

cide using Moringa oleifera seed husks biosorbent 

was due to an instant adsorption process through the 

biosorbent’s boundary layer. However, the pore diffu-

sion step may hinder the process. The study also found 

that an increase in operating temperatures increases 

the removal efficiency. Similarly, the biosorption 

mechanism of pesticide using ACR or AIW biosorbent 

involved ion exchange, chelation, and complexation 

with the functional groups on the biosorbent’s surface 

and the release of H3O+ into solution (Sarker et al. 

2017). Various factors influence biosorption efficacy, 

including biosorbent dosage, initial pollutant concen-

tration, pH, temperature, contact time, biosorbent par-

ticle size, etc. (Bezerra et al. 2020; Ramrakhiani et al. 

2019; Sarker et al. 2017). According to Ramrakhiani 

et al. (2019), the glyphosate herbicide removal using 

biosorbent was possibly due to the formation of phos-

phate-metal complexes as (1) mononuclear or mono-

dentate (bridging);  (2) binuclear or bidentate surface 

complexation; or (3) dense-packed mononuclear sur-

face complexation at increasing concentration of 

glyphosate herbicide. Another route is the formation 

of metal-carboxyl group and surface-amino group 

complexes, which can also be considered as weak 

binding. Chen et al. (2019) demonstrated that bio-

sorbent made of peanut shell or wheat straw immobi-

lized laccase could remove nine pesticide residues 

(i.e.  isoproturon, atrazine, prometryn, mefenacet, pe-

noxsulam, nitenpyram, prochloraz, pyrazosulfuron-

ethyl, and bensulfuron-methyl). They further added 

that the pesticide removal mechanism involves bio-

sorption mechanism which coupled with degradation.  

 
 Organic pollutants 

 
Liu et al. (2017) studied the application of biochar 

from poplar catkin as a low-cost and renewable bio-

sorbent in removing organic pollutants such as organic 

compounds from wastewater streams.  

The study demonstrated that the adsorption of organic 

pollutants was endothermic and spontaneous, which 

comprised outer-sphere surface complexes and hydro-

gen-bonding interactions.The findings confirmed that 

converting poplar catkins into biochar can be a sus-

tainable solution in removing organic pollutants in 

wastewater. While a study by Dawood et al. (2017) 

found that the adsorption mechanism of organic pollu-

tants removal using pine cone biochar was mainly fol-

lowing the chemisorption route, endothermic and 

spontaneous. Such adsorption mechanisms of organic 

pollutants have also been highlighted in various stud-

ies (Chen et al. 2019; Dai et al. 2019; Elayadi et al. 

2020).    

 
Opportunities and challenges for future implemen-

tation 

 
Wastewater is widely used in the world for irrigation 

due to the water scarcity and the demand for the 

wastewater treatment is increasing rapidly (Tabatabaei 

et al. 2020). ACR and AIW are highly abundant in 

terms of availability in Indonesia and can be used for 

the treatments. Most ACR and AIW are the carbona-

ceous source that is potential for activated carbon, for 

instance, coconut shells (Grace et al. 2016). Many 

studies have reported that ACR or AIW, either as filter 

media, activated carbon, biochar, or biosorbent, are ef-

fective for removing heavy metals, organic and non-

organic pollutants, and dyes (Rodriguez et al. 2020; 

Sadeek et al. 2015; Yahya et al. 2015; Yap et al. 2017). 

Grace et al. (2016) and Bhatnagar et al. (2010) re-

viewed, for instance, that coconut shells were widely 

used for removing contaminants (i.e. nitrate, ammo-

nium, and phosphate) in drinking water treatment or 

pollutants (i.e. Cu, Pb, Cd, Zn, Ni, dyes, natural or-

ganic matter/NOM, radionuclides, and anions) in 

wastewater treatment. Another successful example of 

valorizing of AIW was tea and coffee waste activated 

carbon which effectively removed phenol and NO3
−-

N in wastewater streams (Lamine et al. 2014; Wang et 
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al. 2014). Various studies, for instance, also high-

lighted the potency of ACR such as rice husk as a suc-

cessful biosorbent for removing nitrate, phosphate, 

ammonium, heavy metals, dyes, and humic acid 

(Daifullah et al. 2004; Grace et al. 2016; Krishnani et 

al. 2008; Liu et al. 2012). Yahya et al. (2015) reported 

that ACR is relatively inexpensive, locally available, 

and effective materials to be commercially used as ac-

tivated carbon for many applications, including 

wastewater treatment. Bolong et al. (2016) stated that 

using OPEFBs as biosorbent for simple wastewater 

treatment technology offered a sustainable solution for 

waste problems faced by oil palm mills and offered al-

ternative eco-friendly and high value-added bioprod-

ucts. Those studies revealed a great potential of using 

ACR or AIW in water or wastewater treatment. 

However, the critical challenges of transforming ACR 

and AIW in wastewater biosorption technology in-

clude the high cost of carbonation and activation pro-

cess, making the process not sustainable and feasible. 

Also, the need for regeneration treatment as the bio-

sorbent tends to become saturated and exhausted, 

which reduces the efficacy of pollutant removal 

(Grace et al. 2016; Rashid et al. 2016). Another chal-

lenge is that further investigation is required on the 

production, optimization, and applications of ACR- 

and AIW-based wastewater biosorption on a much 

bigger scale and to prove their valuable application 

(Yahya et al. 2015). Rashid et al. (2016) stated that the 

difficulty of biosorbent to recover during and at the 

end of analysis restricts its commercial application. 

 
Conclusion  

 
The application of ACR and AIW as natural bio-

sorbent, filter media, activated carbon, or biochar in 

wastewater technology is greatly potential. Indonesia 

has abundant ACR and AIW, which are currently and 

mainly disposed of to landfills or surrounding areas. 

Therefore, the availability, renewable resources, and 

low-cost raw material acquisition of ACR and AIW 

pose huge opportunities for further valorisation into 

more high-added value products. Yet, further investi-

gation is essential to examine the scaling-up and com-

mercialization potential of ACR and AIW as natural 

biosorbent in wastewater treatment. This paper sup-

ports that valorizing ACR and AIW for treating 

wastewater provides multiple benefits of reducing 

waste problems, implementing eco-friendly and sus-

tainable wastewater treatments, and providing social 

and health benefits to nearby society. Thus, the 

broader application prospect of low-carbon and low-

cost ACR and AIW utilization in wastewater biosorp-

tion is greatly feasible.  
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