- Aasfar, A., A. Bargaz, K. Yaakoubi, A. Hilali, I. Bennis, Y. Zeroual, and I. Meftah Kadmiri. 2021. Nitrogen fixing azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Frontiers in Microbiology. 12:
- Alalaf, A. H. 2020. The role of biofertilization in improving fruit productivity: a review. International Journal of Agricultural and Statistical Sciences. 16: 107-112.
- Ardakani, M.R., D. Mazaheri, and G. Nourmohammadi. 2001. Effect of azospirillum, mycorrhiza and streptomyces with manure utilization on yield and yield component of wheat (mahdavi var.). Journal of Agriculturan Science. 7: 1- 16.
- Arora, M., P. Saxena, M.Z. Abdin, and A. Varma. 2018. Interaction between Piriformospora indica and Azotobacter chroococcum governs better plant physiological and biochemical parameters in Artemisia annua plants grown under in vitro conditions. Symbiosis. 75: 103–112.
- Aseri, G.K., N. Jain, J. Panwar, A.V. Rao, and P.R. Meghwal. 2008. Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum) in Indian Thar Desert. Scientia Horticulturae. 117: 130–135.
- Chavada, N.B., R. Patel, S. Vanpuria, B.P. Raval, and P.V. Thakkar. 2010. A study on isolated diazotrophic (non-symbiotics) bacteria from saline desert soil as a biofertilizer. International Journal of Pharmaceutical Sciences and Researches. 1: 52–54.
- Dadok, M., M. Beglarian, S. Mehrabian, H. Zali, M. Zamanian azodi, and M. Salehi. 2013. Phylogenetic identification of nitrogen-fixing bacteria isolated from the rhizosphere of asparagus plants using 16s rRNA and the effect of zinc on isolated strains. Scientific Journal of Ilam University of Medical Sciences. 20(5): 112–20.
- Dadok, M., Mehrabian, S., Salehi, M., and Irian, S. 2014. Morphological, biochemical and molecular characterization of twelve nitrogen-fixing bacteria and their response to various zinc concentration. Jundishapur Journal of Microbiology, 7:
- Das, K., R. Dang, and T.N. Shivananda. 2008. Influence of bio-fertilizers on the availability of nutrients (N, P and K) in soil in relation to growth and yield of Stevia rebaudiana grown in South India. International Journal of Applied Research in Natural Products. 1: 20-24.
- Dupin, S.E., R. Geurts, and E.T. Kiers. 2020. The non-legume Parasponia andersonii mediates the fitness of nitrogen-fixing rhizobial symbionts under high nitrogen conditions. Frontiers in Plant Science. 10: 1779-1789.
- El-Zeiny, O.A.H. 2007. Effect of biofertilizers and root exudates of two weed as a source of natural growth regulators on growth and productivity of bean plants (Phaseolus vulgaris). Journal of Agricultural and Biological Science. 3: 440–446.
- Esbati, M., A. Akhavan Sepahi, A. Asgharzadeh, and M. Khosrow Shahli. 2014. Isolation, identification and population study of Azospirillum In soils around Tehran and evaluation of their growth stimulant effects on tomato plants under greenhouse conditions. Soil Biology. 2(1): 43-54. (In Persian).
- Haghighi, S., T.S. Nejad, and S. Lack. 2011. Calculate the growth dynamics of root and shoot of bean plants. Journal of American Science. 7: 19–26.
- Hajeeboland, R., N. Asgharzadeh, and Z. Mehrfar. 2004. Ecological study of Azotobacter in two pasture lands of the north-west Iran and its inoculation effect on growth and mineral nutrition of wheat (Triticum aestivum cv. Omid) plants. JWSS-Isfahan University of Technology. 8: 75–90. (In Persian).
- Hasanudin, H. 2003. Increasing of the nutrient and uptake avaliability of N and P and through corn yield of inoculation of mycorrhiza, azotobacter and on ultisol organic matter. Journal of Agriculture Sciences of Indonesia. 5: 83–89.
- Khosravi, H., and H. Mohammadi. 2013. Investigation of the effects of inoculation of Tobacteria with fertilizer on dryland wheat. Journal of Soil Management and Sustainable Production. 3(2): 219-205. (In Persian).
- Kumar, V., R.K. Behl, and N. Narula. 2001. Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under green house conditions. Microbiological Research. 156: 87–93.
- Kumar, V., and K.P. Singh. 2001. Enriching vermicompost by nitrogen fixing and phosphate solubilizing bacteria. Bioresource Technology. 76: 173–175.
- Kumar, G.P., S.K. Yadav, P.R. Thawale, S.K. Singh, and A.A. Juwarkar. 2008. Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter –A greenhouse study. Bioresource Technology. 99: 2078–2082.
- Kurdish, I.K., Z.T. Bega, and I.Y. Tsarenko. 2006. The effects of several factors on the growth of pure and mixed cultures of Azotobacter chroococcum and Bacillus subtilis. Applied Biochemistry and Microbiology. 42: 278–283.
- Martin, X.M., C.S. Sumathi, and V.R. Kannan. 2011. Influence of agrochemicals and Azotobacter sp. application on soil fertility in relation to maize growth under nursery conditions. Eurasian Journal of Biosciences. 5: 19–28.
- Mukhtar, H., H. Bashir, A. Nawaz, and I. Haq. 2018. Optimization of growth conditions for Azotobacter species and their use as biofertilizer. Jounnal of Bacteriology and Mycology. 6: 274-278.
- Nosheen, A., A. Bano, and F. Ullah. 2016. Bioinoculants: a sustainable approach to maximize the yield of Ethiopian mustard (Brassica carinata) under low input of chemical fertilizers. Toxicology and Industrial Health. 32: 270–277.
- Rajaee, S., H.A. Alikhani, and F. Raiesi. 2007. Effect of plant growth promoting potentials of Azotobacter chroococcum native strains on growth, yield and uptake of nutrients in wheat. Journal of Crop Production and Processing. 11: 285–297. (In Persian).
- Soleimanifard, A., M. Mojaddam, S. Lack, and M. Alavifazel. 2022. Effect of azotobacter and nitrogen fertilizer levels on agro-physiological traits and yield of safflower (Carthamus tinctorius) genotypes under different moisture conditions. Journal of Crop Ecophysiology. 15: 467-492.
- Soumare, A., A.G. Diedhiou, M. Thuita, and M. Hafidi. 2020. Exploiting biological nitrogen fixation: a route towards a sustainable agriculture. Plants. 9: 1011-1033.
- Romero-Perdomo, F., J. Abril, M. Camelo, A. Moreno-Galván, I. Pastrana, D. Rojas-Tapias, and R. Bonilla. 2017. Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): Effect in reducing N fertilization. Revista Argentina de Microbiologia. 49: 377-383.
- Tran, Q., D.T. Pham, and V. Phan. 2017. Using 16S rRNA gene as marker to detect unknown bacteria in microbial communities. BMC Bioinformatics. 18: 155-161.
- Yasari, E., M.A.E. Azadgoleh, S. Mozafari, and M.R. Alashti. 2009. Enhancement of growth and nutrient uptake of rapeseed (Brassica napus) by applying mineral nutrients and biofertilizers. Pakistan Journal of Biological Sciences. 12: 127–133.
|