[1]
|
Sepidarkish, M., Almasi-Hashiani, A., Shokri, F., Vesali, S.,Karimi, E., and Omani, R., “Prevalence of Infertility Problems among Iranian Infertile Patients Referred to Royan Institute”, International Journal of Fertility and Sterility, Vol. 10, No. 3, pp. 278-282, Oct-Dec 2016.
|
[2]
|
Sun, H., Gong, T., T., Jiang, Y., T., Zhang, S., Zhao, Y. H., and Wu, Q., J., “Global, regional, and national prevalence and disability-adjusted life-years for infertility in 195 countries and territories, 1990–2017: results from a global burden of disease study, 2017”, AGING, Vol. 11, No. 23, Dec 2019.
|
[3]
|
Parsanezhad, M., E., Namvar, B., Zare, N., Keramati, P., Khalili, A., and Parsa-Nezhad, M., “Epidemiology and Etiology of Infertility in Iran, Systematic Review and Meta-Analysis”, Journal of Women’s Health, Issues & Care, Vol. 2, Issue 6, October 2013.
|
[4]
|
Abrao, M. S., Muzii, L., Marana, R., “Anatomical causes of female infertility and their management”, International Journal of Gynecology and Obstetrics, Vol. 123, pp. S18-S24, Dec 2013.
|
[5]
|
Inhorn, M., C., Patrizio, P., “Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century”, Human Reproduction Update, Vol. 21, No. 4, pp. 411 – 426, March 2015.
|
[6]
|
Girela, J. L., Gil, D., Johnsson, M., Gomez-Torres, M. J., and Juan, J. D., “Semen Parameters Can Be Predicted from Environmental Factors and Lifestyle Using Artificial Intelligence Methods”, BIOLOGY OF REPRODUCTION, Vol. 88, Issue 4, Apr 2013.
|
[7]
|
Abbirami, V. S., Shanthi, V., “Spermatozoa Segmentation and Morphological Parameter Analysis Based Detection of Teratozoospermia”, International Journal of Computer Applications, Vol. 3, No.7, June 2010.
|
[8]
|
Palermo, G., Joris, H., Devroey, P., Van Steirteghem, A. C., “Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte”, The Lancet, Vol. 340, July 1992.
|
[9]
|
Monte, G. L., Murisier, F., Piva, I., Germond, M., Marci, R., “Focus on intracytoplasmic morphologically selected sperm injection (IMSI): a mini-review”,Asian journal of andrology, 2013.
|
[10]
|
Bijar, A., Benavent, A. P., Mikaeili, M., Khayati, R., “Fully automatic identification and discrimination of sperm’s parts in microscopic images of stained human semen smear”, Journal of Biomedical Science and Engineering, Vol. 5, No.7, pp. 384-395, July 2012.
|
[11]
|
Sanchez, L., Petkov, N., Alegra, E., “Statistical approach to boar semen evaluation using intracellular intensity distribution of head images”, Cellular and molecular biology, Vol. 52, Issue 6, pp. 38-43, 2006.
|
[12]
|
Alegra, E., Biehl, M., Petkov, N., and Sanchez, L., “Automatic classification of the acrosome status of boar spermatozoa using digital image processing and LVQ”, Computers in Biology and Medicine, Vol. 38, Issue 4, pp. 461-468, Apr 2008.
|
[13]
|
Vicente-Fiel, S., Palacin, I., Santolaria, P., Yaniz, J. L., “A comparative study of sperm morphometric subpopulations in cattle, goat, sheep and pigs using a computer-assisted fluorescence method (CASMA-F)”, Animal Reproduction Science, Vol. 139, pp.182-189, Apr 2013.
|
[14]
|
Uyar, A., Bener, A., Nadir Ciray, H., “Predictive Modeling of Implantation Outcome in an In Vitro Fertilization Setting: An Application of Machine Learning Methods”, Medical Decision Making, Vol. 35, Issue 6, pp. 714-725, May 2015.
|
[15]
|
Chang, V., Saavedra, J. M., Castaneda, V., Sarabia, L., Hitschfeld, N. Hartel, S., “Gold-standard and improved framework for spermhead segmentation”, Computer Methods and Programs in Biomedicine, Vol. 117, Issue 2, pp. 225-237 Nov. 2014.
|
[16]
|
Chang, V., Heutte, L., Petitjean, Hartel, S., Hitschfeld, N., “Automatic classification of human sperm head morphology”, Computers in Biology and Medicine, Vol. 84, pp. 205-216, May 2017.
|
[17]
|
Mendoza, F., Manotas, A. K. D. L. H., Ariza, P., Ojeda, J. A. S., Melo, M. P., “Fertility Analysis Method Based on Supervised and Unsupervised Data Mining Techniques”, International Journal of Applied Engineering Research, Vol. 11, No 21, pp. 10374-10379, Nov 2016.
|
[18]
|
Javadi, S., Mirroshandel, S. A., “A novel deep learning method for automatic assessment of human sperm images”, Computers in Biology and Medicine, Vol. 109, pp. 182–194, 2019.
|
[19]
|
Riordon, J., Callum, C. M., Sinton, D., “Deep learning for the classification of human sperm”, Computers in Biology and Medicine, Vol.111, Aug. 2019.
|
[20]
|
Iqbal, I., Mustafa, Gh., Ma, J., “Deep Learning-Based Morphological Classification of Human Sperm Heads”, Diagnostics, Vol. 10, Issue 5, May 2020.
|
[21]
|
Pezeshki, M., Fan, L., Brakel, P., Courville, A., Bengio, Y., “Deconstructing the Ladder Network Architecture”, Proceedings of the 33 rd International Conference on Machine Learning, New York, NY, USA, Vol. 48, 2016.
|
[22]
|
Rasmus, A., Valpola, H., Honkala, M., Berglund, M., Raiko, T., “Semi-Supervised Learning with Ladder Networks”, Proceedings of the 28th International Conference on Neural Information Processing Systems, Vol. 2, pp. 3546–3554, Neural and Evolutionary Computing (cs.NE), Nov 2015
|
[23]
|
Ghasemian, F., Mirroshandel, S. A., Monji-Azad, S., Azarnia, M., Zahiri, Z., “An efficient method for automatic morphological abnormality detection from human sperm images”, Comput Methods Programs Biomed, Vol. 122, pp. 409–420, Dec. 2015.
|
|