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ABSTRACT: 
This paper proposes a new feature extraction algorithm which is robust against noise using histogram compensation 
and asymmetric filter. Temporal masking is used to improve Automatic Speech Recognition (ASR) systems 
specifically in matched and multi-style training conditions. Nonlinear filtering and temporal masking are used in the 
proposed algorithm. By matching the power histograms of the input in each frequency band to those obtained over 
clean training data, and then mixing the processed and unprocessed spectrums together, speech recognition accuracy 
can be appropriately increased. The obtained results show that recognition accuracy in comparison with Mel 
Frequency Cepstral Coefficients (MFCC), Perceptual Linear Prediction (PLP) and Power Normalized Cepstral 
Coefficients (PNCC), improves in various training conditions and different SNRs. 
 
KEYWORDS: Robust speech recognition, Temporal masking, Asymmetric nonlinear filter, Averaging weighted 
spectral. 
 
1.  INTRODUCTION 

Accuracy of Automatic Speech Recognition (ASR) 
system decreases when it is used in noisy 
environment. The reason is the difference between 
training data and test data. Many robust ASR 
algorithms have been presented so far. Nevertheless, 
obtaining good performance in noisy environments 
still remains a challenging task. The problem is that 
recognition accuracy degrades significantly if training 
conditions are not matched to the corresponding test 
conditions. 

The state-of-the-art ASR systems show excellent 
performance in a controlled environment. These 
systems have designed for a certain noise, but yet 
there is not algorithm with acceptable accuracy in 
different noise environments. Cepstral Mean 
Normalized (CMN) [1] and Mean and Variance 
Normalization (MVN) [2] are the simplest forms of 
these techniques[3], in which it is assumed the mean 
or the mean and variance of the cepstral vectors 
should be equal for all utterances. Histogram 
Equalization (HEQ) [4] is another strong method that 
assumes all cepstral vectors have the same probability 
density function. In [5], Kim described PNCC, which 
is more robust against noise and reverberation than 
MFCC and PLP features. 

Nevertheless, most of these algorithms are based 

on this issue that the ASR system is trained by clean 
speech, only to be exposed to noisy data in the testing 
stage. In recent years, it has been seen that it is useful 
to train very large systems using noisy data. Such 
multi-style training is common and requires robustness 
algorithms with good performance (when noisy data is 
used for training). This paper is based on histogram 
transform that is performed on the power of the speech 
signal in Equivalent Rectangular Bandwidth (ERB)-
warped sub-bands. This transformation is followed by 
averaging a weighted spectral on the processed and 
unprocessed power spectrums. 

For the first time, use of histogram matching was 
described to compensate the effects of nonlinear 
channel distortion in speaker identification systems 
[6]. The first direct application of histogram matching 
for ASR was recommended in [7] that could be 
considered as a computationally complicated form of 
unsupervised speaker adaptation. This method is 
comparable in performance to Maximum Likelihood 
Linear Regression (MLLR). In this method using Mel 
Frequency Cepstral Coefficients (MFCC), histogram 
matching is used in the feature level. During the recent 
years, researchers have explored the application of 
histogram-based methods on robust speech 
recognition [8]. In [9] it is focused on a parametric 
implementation, by quintile-based histogram 
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equalization. This equalization is considered for 
capstral features and compensates the effect of 
additive noise. 

The proposed method modifies and extends these 
current approaches by changing the procedure of 
histogram computation, normalization and through the 
subsequent averaging weighted spectral. Using 
nonlinear warping function based on power in each 
frequency band, noise effects are minimized because 
related energy to noise signal is matched by clean 
speech with more accuracy. 

In this paper, we also utilize asymmetric noise 
suppression to minimize noise effects. Since speech 
power changes more rapidly than background noise in 
each frequency channel, we can expose this kind of 
noise compensation for discussion. On the other hand, 
since speech has higher modulation frequency 
spectrum than noise, many algorithms have been 
raised by band-pass filtering or high-pass filtering in 
modulation spectrum domain [10], [11]. The simplest 
way is high-pass filtering in each channel that removes 
low frequency components [12], [13]. A significant 
issue in the application of conventional linear high-
pass filtering in power domain is that the output power 
can become negative which is mathematically 
impossible. Also it results in some problems in speech 
synthesis unless we use appropriate floor value for 
power coefficients [13]. Therefore, filtering could be 
performed after applying log nonlinearity (as MFCC 
method) but this is not suitable for environment 
containing additive noise. Spectral subtraction is 
another way for decreasing the effects of noise whose 
power changes slowly [14]. The noise level is 
estimated in spectral subtraction techniques from the 
power of speech parts [14] or through using a 
continuous- update approach [12]. We introduce a 
method that results in time variable estimation of noise 
floor by using asymmetric filter, and then it is 
subtracted from instantaneous power. 

This paper is organized as follows: in section 2 the 
overall structure of the proposed method is presented. 
Next, in section 3, general characteristics of 
asymmetric nonlinear filter are explained. In sections 
4 and 5 temporal masking and weight smoothing 
applied in the proposed method are presented, 
respectively. In section 6, histogram based 
transformation is detailed. Then, in section 7, speech 
re-synthesis is introduced and it is followed by the 
experiments in section 8. Finally, conclusions are 
drawn in section 9.  

 
2.  OVERALL REVIEW OF THE PRPOSED 
STRUCTURE 

Fig. 1 shows the flowchart of the proposed system. 
As shown, the first stage is similar to PLP and MFCC 
methods, except for using frequency analysis by 

gammatone filter. This is followed in the next stage by 
non-linear and time varying operations which are 
performed using longer duration temporal analysis 
with noise suppression. In third stage, histogram of 
input power for each frequency band is matched to 
those obtained over clean training data. Then, the 
processed and the unprocessed spectrums are 
combined together such that the recognition accuracy 
increases.  

In speech processing the length of analysis window 
is normally between 20-30 ms. However, it has been 
shown that use of longer window length corresponds 
to better performance modeling and normalization of 
background noise [5]. Since power of background 
noise changes slowly than speech power, using 
“Medium-Time” process with 50-120 ms in length is 
more appropriate for analysis of background noise. 
The input signal is passed through a high-pass pre-
emphasis filter and the short-time Fourier transform 
(STFT) is calculated using a window with length of 52 
ms. Note that this window length is in interval 50-150 
ms which is used for reducing variance of noise 
estimation. Experimentally, we found that this window 
length creates better performance. Then, squared 
spectrum is integrated using the squared gammatone 
frequency response. Using this procedure we can get 
channel by channel power P[m,l] where m and l are 
frame and channel indices, respectively. In equation 
form, it is represented as: 

 

∑
−

=

=
1

0

2
)(),(],[

N

k

j
l

j kk eGemXlmP ωω                              (1) 

Where aN  indicates size of FFT. We use 16 KHz 
sampling rate and 2048=aN . After weighting the 
frequency, the power has been normalized with peak 
power. ][kGl  is gammatone filter bank for lth channel 

and ],[ kjwemX  shows short-time spectrum of 
speech signal for mth frame. The center frequencies 
are linearly spaced from 200 Hz to 8000 Hz in 
Equivalent Rectangular Bandwidth (ERB). It has been 
shown that using gammatone frequency weighting 
instead of traditional triangle weighting improves the 
performance of ASR system in noisy environment [5]. 
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Fig. 1. Block diagram of the proposed structure 
 

We estimate a quantity described as “medium-time 
power”, ],[ˆ lmQ  which is calculated by using the 
running average of P[m,l] , the power observed in a 
single analysis frame, according to the equation: 

 

∑
+

−=′

′
+

=
Mm

Mmm
lmp

M
lmQ ],[

12
1],[ˆ                              (2) 

 
Selection of factor M has significant effect on 

performance (especially in case of white noise). It is 
empirically found that if we choose the value of 2 for 
M then the recognition accuracy is optimum. 
However, if we use the features based on ],[ˆ lmQ , 
then the recognition accuracy decreases. Because 
onset and offset of the frequency components are 
undetermined. Therefore, in the proposed feature 
extraction method, we use ],[ˆ lmQ  only for estimation 
and compensation of the noise and then we apply both 
asymmetric nonlinear filter and temporal masking for 
compensation of environmental noise and therefore, 
we can improve the features. 

  
3.  GENERAL CHARACTERISTICS OF 
ASYMMETRIC NONLINEAR FILTER 

In the proposed system, we use asymmetric non-
linear filter for estimation of background noise level in 
each frequency band and for each time frame. This 
approach is able to remove slow-varying components 
regardless to considering many artifacts associated 
with over-correction techniques such as spectral 
subtraction [14]. Fig. 2 indicates Asymmetric Noise 
Suppression (ANS) process and temporal masking. 
First, we explain general characteristics of asymmetric 
nonlinear filter.  
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Fig. 3. Sample input (solid curves) and output (dashed line curves) of the filter defined in Eq. (1) for different 
conditions when:  

(a) ba λλ = , (b) ba λλ < , (c) ba λλ > . 
 

This filter is described for the arbitrary input,  ],[ˆ lmQin
 and 

output, ],[ˆ lmQout
, as: 
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where m and l are indices of frame and channel, 

respectively.   aλ  and bλ  are constants with values 
between 0 and 1. If  ba λλ = , reviewing Eq. (3) will be 

easy, and since λ  is positive, it will become a low-
pass IIR filter as observed in Figure 3-a.  

If 01 >>> ab λλ  , then the nonlinear filter functions 
will become upper envelope detectors (Figure 3-b), and 
finally, as shown in Figure 3-c, if 01 >>> ba λλ , the 

filter output,  outQ̂  will tend to follow the lower 
envelope of the input, ],[ˆ lmQin

. For better estimation of 
modeling the medium-time noise, lower envelope with 
changes is applied. Therefore, as this envelope reduces 

in the main input, ],[ˆ lmQin
, slow changes of non-speech 

components are deleted. We use Eq. (4) to represent the 
nonlinear filter described by Eq. (3). 

 
[ ] [ ][ ]1,ˆ1,ˆ

, mQAFmQ inout ba λλ=                                           (4) 
 

This equality will be established only for index m in 
each channel l. 

Regarding to asymmetric nonlinear filter features 
mentioned above, the lower envelope, ],[ˆ lmQle

, 
indicating noise average power is obtained by 
Asymmetric Noise Suppression (ANS) processing 
related to the following equation as observed in Figure 
3-c: 

 
[ ]],[ˆ],[ˆ

5.0,999.0 lmQAFlmQle =                                   (5)  

Where ],[ˆ lmQ  is the medium-time power obtained 
from Eq. (2) and A is a constant value. Then ],[ˆ lmQle

 is 
subtracted from ],[ˆ lmQin

. As shown in Fig. 4, we can 
observe that the obtained results for recognition 
accuracy by using asymmetric nonlinear filter, after 
implementing this structure for different values of aλ  

(a) 

(b) 

(c) 
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(a) 

(c) 

(d) 

(b) 

and bλ . We add three kinds of noise, white noise, 
background music, and reverberation (with a delay of 
about 0.3 seconds). As observed in Fig. 4 the values of 

bλ  from 0.25 to 0.75 result in good recognition 
accuracy. According to this figure the best value for aλ  
is 0.9. Therefore, in practice, we consider 999.0=aλ  
and 5.0=bλ  because the recognition accuracy for 
speech is maximum in the presence of noise. 

 
4.  TEMPORAL MASKING 

Many researchers have found the human auditory 
system focuses more on the onset of an incoming 
power envelope in comparison with falling edge of the 
same power envelope. In this regard, several algorithms 
have been proposed to improve the onset. In this 
section, we propose a simple procedure to incorporate 
this effect in processing the extracted feature vectors. It 
could be applied by using a moving peak for each 
frequency channel, l, and omitting instantaneous power 
if it is under this envelope. This process is shown in 
block diagram of Fig. 5. 

In first stage, power of on-line peak, ],[ˆ lmQp
, is 

calculated for each channel by following equation. 
 

]),[ˆ],,1[ˆ(],[ˆ
0 lmQlmQMaxlmQ ptp −= λ           (6) 

  
Where tλ  is forgetting factor for calculation of on-

line peak, m and l are frame and channel indices, 
respectively, and ],[ˆ

0 lmQ  is output power after ANS 
process. Temporal masking for speech parts is obtained 
through the following equation: 
 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−<

−

−≥
=

],1[ˆ],[ˆ
],1[ˆ

],1[ˆ],[ˆ
],[ˆ

],[ˆ

0

0

0

lmQlmQif

lmQ

lmQlmQif

lmQ

lmR

pt

pt

pt
sp

λ

μ

λ                 (7) 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
80

82

84

86

88

90

92

94

96

98

100
Clean

Landab

A
cc

ur
ac

y 
(1

00
 - 

W
E

R
)

 

 
Landaa = 1.0

Landaa = 0.999

Landaa = 0.99

Landaa = 0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70
White Noise (5dB)

 Landab

A
cc

ur
ac

y 
(1

00
 - 

W
E
R
)

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70
Music Noise (5dB)

 Landab

A
cc

ur
ac

y 
(1

00
 - 

W
E

R
)

 

 
Landaa = 1.0

Landaa = 0.999

Landaa = 0.99

Landaa = 0.9

 
 

0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

10

20

30

40

50

60

70
Reverberation RT60 = 0.5 s

 Landa t

A
cc

ur
ac

y 
(1

00
 - 

W
E

R
)

 

 
mu t = 1.0

mu t = 0.4

mu t = 0.2

mu t = 0.1

 
Fig. 4. Relationship among forgetting factors (  , ) 

and recognition accuracy for speech: (a) clean, (b) 5-dB 
Gaussian white noise, (c) 5-dB music noise and (d) 

Reverberation with RT60 = 0.5. 
 



Majlesi Journal of Electrical Engineering                                      Vol. 7, No. 2, June 2013 
 

6 
 
 

(a) 

(b) 

(c) 

(d) 

 

 

 

 

   

MAX 

ݐߣ  

z1 

ݐߤ  

ܳ0ሾ݉, ݈ሿ  ݐߣ   ܳ ሾ݉ െ 1, ݈ሿ 

ܳ0ሾ݉, ݈ሿ ൏ ݐߣ ܳ ሾ݉ െ 1, ݈ሿ 

ܳ0ሾ݉, ݈ሿ  ܳ ሾ݉, ݈ሿ 

ܳ ሾ݉ െ 1, ݈ሿ 

ܴݏ ሾ݉, ݈ሿ 

 
Fig. 5. Block diagram model for temporal masking 
 
Fig. 6 indicates the relationship between recognition 
accuracy and forgetting factor ( tλ ) and also coefficient 

of elimination ( tμ ). We represent results of 
recognition system by using complete structure of Fig. 
1 and just we change the coefficients of the forgetting 
and elimination factors ( tλ , tμ ). In a clean 

environment, as observed in Figure 6-a, if 85.0≤tλ  

and 2.0≤tμ  , the recognition accuracy will almost 

remain constant. However, if 85.0>tλ  , performance 
will be degraded. In an additive noise environment 
such as weight or music noise as shown in Figures 6-b 
and 6-c, the performance is the same. However, for the 
reverberation, as shown in Figure 6-d, the application 
of temporal masking scheme provides considerable 
improvement. 
 
5.  WEIGHT SMOOTHING 

It has been shown that weight smoothing plays an 
important role in speech enhancement and noise 
suppression [15], especially in non-linear processing. 
Therefore, in order to reduce side effects of non-linear 
operations, we use weight smoothing. According to our 
discussion so far, the effect of combination of 
asymmetric noise suppression and temporal masking 
for a frequency band and specific time frame is 
presented by: 
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Where ],[ˆ lmRsp  and ],[ˆ lmQ  indicate output and 

input powers of asymmetric noise suppression filter 
with temporal masking, respectively. Frequency 
transfer function smoothing is obtained by calculation 
of average of the function ],[ lmT for lth channel. 
Therefore, the frequency averaged weighting function, 

],[ˆ lmT , is given by:  
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Where ),max(1 LNll −= , ),min(2 LNll +=  

and L is the number of channels. In the proposed 
method, N=4 and L=40 are considered. Note that if the 
number of channels differs then the value of N will be 
changed. Time-averaged with frequency-averaged 
transfer function, ],[ lmS , for modulation of short-time 
power, ],[ lmP , is given by: 

 
],[ˆ].,[],[ lmTlmPlmS =                                         (10) 

 
As shown in Fig. 1, we then apply time-frequency 

normalization. Next, power-law nonlinearity function is 
used. This function is given by: 

 
15/1],[],[ lmSlmPorig =                                             (11) 

 
Where ],[ lmS is out power after normalization. 

The effect of using ANS process and temporal masking 
has been shown in Fig. 7. As shown, the recognition 
accuracy increases by using power-law nonlinearity 
function instead of non-linear logarithm function 
applied in MFCC method. It has to be mentioned that 
the power-law nonlinearity function has been already 
used in PNCC method, but in combination with ANS 
process in the proposed system results in more 
accuracy in recognition especially for white noise and 
background music (see Fig. 7(a) and Fig. 7.(b)).  

In addition it is observed that the recognition 
accuracy increases when the temporal masking is used. 
This is considerably observed in reverberated speech, 
especially for longer reverberations.    
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Fig. 7.  The contribution of the power-law 
nonlinearity, asymmetric noise suppression, and 

temporal masking in the presence of (a) white noise, (b) 
music noise, (c) reverberation. 

 
6.  HISTOGRAM BASED TRANSFORMATIONS 

In this step, we minimize the effect of noise, using a 
non-linear power-warping function in each frequency 
band. In other words, the robustness of the recognition 
system can be more improved by matching between the 
power of input histograms and those obtained over 
clean training data in each frequency band, and then 
combination of the processed and the unprocessed 
spectrums together [16]. Before calculation of the 
histograms over training data, the power signals are 
normalized by its local minimum and maximum values. 
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On the other hand, the calculated histograms over 
testing data are normalized by global minimum and 
maximum values of relative spectrum. This 
normalization method considerably reduces the effect 
of noise. In following section, we show that using the 
averaged-weighting between the processed and the 
unprocessed power spectrums can improve the 
performance of the recognition system histogram 
based.  We can automatically achieve the proper 
nonlinear warping using non-parametric histogram 
matching. We use histogram matching described in 
[16]. 

 
6.1.  Histogram-based power warping 

Given a Cumulative Distribution Function (CDF) as 
input part, CX and CY are defined for random 
variables, X and Y, respectively. Therefore, X can be 
transformed to Y by: 

 
( ))()( 1 XCCxf XY

−=                                               (12) 
 
In proposed method, the sample CDFs are 

effectively scaled so that the corresponding histograms 
never have empty bins at the edges. This means that the 
histograms representing the input signal levels may be 
have empty bins at their edges, which we can decrease 
substantial noise. 

40 histograms are achieved to display the output of 
each Gammatone filter bank channel for clean speech. 
As shown in Fig. 1, the histograms are calculated 
immediately after nonlinearity power function. Each 
histogram is obtained by dividing the range of the data 
in the channel into 100 bins with uniform band width. 
Real band widths and centers are changed from one 
channel to other channel. Therefore, there are never 
empty histogram bins at the edges. 

For each utterance, the centers of 100 bins are 
equally scaled and used for calculation of input 
histograms. These centers are calculated by dividing 
the global range of the spectrum over all Gammatone 
channels. For a given frequency band, input histogram 
includes empty bins at the edges. Matching between 
test and sample histograms is nonlinear due to being 
mismatch in the related frequency band. Power warping 
causes that the maximum and minimum values of a 
specific channel are changed to the global maximum 
and minimum, respectively. Therefore, all data is 
redistributed, which tends to reduce noise effects. 

 
6.2.  Averaging weighted spectral  

In some cases, the nonlinear warping is affected by 
the histogram matching. This causes that the noisy part 
is amplified compare to the parts without noise. This is 
related to the conditions that noise is filtered. Due to 
processing nature, a filtered channel is normally 
amplified. The histogram matching may partially 

suppress parts of speech with low energy. In order to 
balance the compensation of the unprocessed signal 
with the processed signal, we propose a methodology 
which calculates linear combination of spectral 
weighting by using the processed and the unprocessed 
spectrums. By averaging the post-processed weighted 
spectral, basic power spectrum linear combination, 
Porig, is related to process spectrum, Pproc, as: 

 

10

],[)1(],[.],[

≤≤

−+=

w

lmPwlmPwlmP procorigout         (13)  

 
Where m and l are indices of frame and channel, 

respectively. 
Experimentally, the weighting parameter w is 

determined based on training style and the type of 
noise. The optimum weighting parameter, w, depends 
on training style, SNR and the type of noise. For 
example, if additive white Gaussian noise (AWGN) 
with 5 dB SNR is used under multi-style training, the 
optimum value of w is 0.6 as shown in Fig. 8. 
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Fig. 8. system performance to various values of w in 5 
dB SNR white noise under multi-style training 
 

Table 1: optimum values of w for each SNR and 
training style for white noise 

25dB 
SNR 

20dB 
SNR 

15dB 
SNR 

10dB 
SNR  5dB  0dB  

Training 
style  

    SNR SNR  

0.7 0.1 0.2 0 0  0  Clean 

0  0.5  0.5  0.5  0.6  0.6  
Multi-
style 

training  

0.7  0.1  0.1  0.2  0.3  0.3  Matched 
training  
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7.  SPEECH RE-SYNTHESIS 
Although the proposed system is performed on 

parametric based on STFT, we can obtain better 
recognition accuracy by re-synthesis of speech signal 
and then calculation of conventional cepstral-based 
features, rather than deriving cepstral parameters 
directly without re-synthesized speech. The speech re-
synthesis causes that the proposed system is easily 
coordinated with traditional feature extraction 
algorithms. Speech re-synthesis is performed using 
overlap-add (OLA) algorithm [17]. 

 
8.  EXPERIMENTAL RESULTS  

Applied speech database is chosen from small 
FarsDat database [18], that is selected from repetitive 
and log sentences of speech. Therefore, recognition is 
continuous and independent from speaker. 200 
sentences for training database and 62 sentences for 
testing database are selected. FarsDat database includes 
44 acoustic labels. To prevent recognition model 
vague, some explosive phoneme packages are 
combined. Therefore, phoneme units are decreased to 
35 units. Since phonic files of FarsDat database are 
recorded in silence mode, their quality is high and the 
ratio of signal to noise (SNR) is about 34 dB. Therefore 
to create noise database (typically additive noise), 
NOISEX-92 database is used [19]. In order to evaluate 
the performance of the proposed system against noise, 
we use three different additive noises: white noise, 
background music and reverberation. The background 
music has been taken from DARPA Hub 4 [19]. 

This part shows the recognition accuracy of the 
proposed system in presence of various SNRs from 
noise under various training styles. As mentioned in 
Sec. 6.2., the optimum w depends on training style, 
SNR and type of noise. Table 1 shows different values 
of w for white noise. 

It is observed that optimum selection of w manually 
for each SNR, noise type, training condition, etc is 
impossible. We found if instead of blindly selecting 
optimal values of w, we spot that w is fixed, 
recognition accuracy still improves. This amount is 
good overall for each training style but it may not be 
the best choice for any particular noise type, training 
condition, or SNR. Related results to w=0.7 are shown 
in Fig. 9.  
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Fig. 9. Speech recognition accuracy that damaged with 
white noise and w=0.7 under different training styles: 

(a) training with clean data, (b) multi-style training, (c) 
matched training 
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Fig. 10. Comparison of the recognition accuracy using 
MFCC features as clean training and multi-style 

training for different noises (a) white noise, (b) music 
noise, (c) reverberation. 

 
In fact, Fig. 9 indicates the performance of the 

proposed system in comparison with MFCC, PLP and 
PNCC methods. As observed, the proposed system 
provides better recognition accuracy compared to the 
popular methods. The obtained results also show that 
taken an accurate mechanism to select w creates 
significant improvements with various SNRs of white 
noise in multi-style and matched training. As shown in 
Fig. 9, selection of fixed w (even if it is not optimized) 
leads to improvement of the recognition accuracy, 
specifically in multi-style and matched training. 

After selection of w for each type of noise, we 

examine the recognition accuracy for three types of 
noise (white noise, background music and 
reverberation) and for both clean and multi-style 
training compared to MFCC method. The obtained 
results have been shown in Fig. 10. As observed, the 
proposed system provides better performance for three 
different noises. 
 
9.  CONCLUSIONS 

In this paper, we proposed a new system containing 
a set of features which results in higher recognition 
accuracy in comparison with the popular methods such 
as MFCC, PLP and PNCC in noisy environment. The 
obtained results show that use of an accurate 
mechanism for selection of weighting parameter, w, 
improves the performance of the proposed system with 
different SNRs. Also, setting a constant value for 
weighting parameter, w, even if it is not the optimum 
value, results in more improvement on the recognition 
accuracy especially in multi-style training.   
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