تعداد نشریات | 418 |
تعداد شمارهها | 9,991 |
تعداد مقالات | 83,505 |
تعداد مشاهده مقاله | 77,035,257 |
تعداد دریافت فایل اصل مقاله | 54,084,167 |
Edge Detection of Noisy Images Using the Intelligent Techniques | ||
Majlesi Journal of Electrical Engineering | ||
مقاله 7، دوره 7، شماره 2، شهریور 2013، صفحه 58-67 اصل مقاله (1.09 M) | ||
نوع مقاله: Review Article | ||
نویسندگان | ||
Hamidreza Alikhani1؛ Ali Reza Naghsh* 2؛ Razieh Jalali Varnamkhasti1 | ||
1Department of Electrical Engineering, Tafresh University, Tafresh, Iran | ||
2Department of Electrical Engineering, Najaf Abad Azad University, Najaf Abad, Iran | ||
چکیده | ||
In this paper an approach is presented for edge detection of noisy images that have been degraded by impulsive noise. It uses Fuzzy Inference System (FIS) and Ant Colony Optimization (ACO). Starting with, using the FIS with 12 simple rules is to identify the noisy pixels in order to perform the filtering operation only for the noisy pixels. Probable edge pixels in 4 main directions for filtered image are detected using fuzzy rules and then ACO is applied by assigning a higher pheromone value for the probable edge pixels rather than other pixels so that the ant’s movement toward edge pixels gets faster. Another factor is the influence of the heuristic information in the movement of any ant that is considered to be proportional to local change in intensity of each pixel in order to the possibility of movement of ants increased toward pixels that have more change in their local intensity. Finally, by using an intelligent thresholding technique which is provided by training a neural network, the edges from the final pheromone matrix are extracted. Experimental results are provided in order to demonstrate the superior performance of the proposed approach. | ||
کلیدواژهها | ||
en | ||
مراجع | ||
[1] H.Hassanpour,E.Nadernejad, and H.Miar,“Image restorationusing a PDE-based approach, ”Int. J. of Engineering-Trans.B:Applications,Ar.,vol.20,no.3,pp.225-236,Dec.2007.
[2] E.nadernejad and H.Hassanpour,“A comparison and analysisof different PDE-based approaches for image enhancement,”inProc.Int. Conf. on Signal Processing and CommunicationSystems ICSPCS,Australia,Dec.2007.
[3] R.C.Gonzalez and R.E.Woods,Digital Image Processing, Prentice Hall,2004.
[4] T.Chen,K.K.Ma, and L.H.Chen,“Tri-State Median Filter forImage Denoising,”IEEE Transactions on Image Processing,vol.8,no.12,pp.1834-1838,Dec.1999.
[5] V.Crnojevic,V.Senk,andZ.Trpovski,“Advanced ImpulseDetection Based on Pixel-Wise MAD, ”IEEE Signal Processing Letters,vol.11,no.7,pp.589-592,July. 2004.
[6] R.Garnett,T.Huegerich,C.Chui,andW.He, “A Universal NoiseRemoval Algorithm With an Impulse Detector,”IEEE Transactions on Image Processing,vol.14,no.11,pp.1747-1754, November. 2005.
[7] P.KumarSa,B.Majhi,G.Panda, “Improved Adaptive ImpulsiveNoise Suppression,”Fuzzy Systems Conference. 2007, Fuzz-IEEE 2007.IEEE International.
[8] C.J. Miosso, and A. Bauchspiess, “Fuzzy Inference System Applied to Edge Detection in Digital Images, ”Proceedings of the V Brazilian Conference on Neural Networks, pp. 481-486, April. 2001.
[9] L. Hu, H.D. Cheng, and M. Zhang,“A High Performance EdgeDetector Based On Fuzzy Inference Rules, ”Information Science 177, pp. 4768-4784, 2007.
[10] J.K. Paik, and A.K. Katsaggelos,“Edge Detection Using A Neural Network,”International Conference onAcoustics,Speech,andSignalProcessing, ICASSP- 90, pp. 2145- 2148, April. 1990.
[11] M.S. Bhuiyan, H. Matsuo, A. Iwata, H. Fujimoto, and M. Sato,“An Improved Neural Network Based Edge Detection Method,”Tech. Rep, Dept. of Electrical and Computer Engineering and Dept. of Mechanical Engineering,NagoyaInstituteof Technology, Nagoya, JAPAN 466.
[12] M. Dorigo, G.D. Caro, and T. Stutzle, “Special Issue on Ant Algorithms,”Future Generation Computer Systems, vol.16, Jun.2000.
[13] O. Cordon, F. Herrera, and T. Stutzle, “Special Issue onAntColonyOptimization:Modelsand Applications,”Mathware and Soft Computing , vol.9,Dec.2002.
[14] M. Dorigo, L.M. Gambardella, M. Middendorf, and T. Stutzle,“SpecialIssueonAnt Colony Optimization,”IEEE Transactions on Evolutionary Computation, vol. 6, Jul.2002.
[15] H. Zheng, A. Wong, and S.Nahavandi,“Hybrid ant colony algorithm for texture classification,” in Proc. IEEE Congress on Evolutionary Computation, Canberra, Australia,pp.2648-2652, Dec.2003.
[16] D. Martens, M.D. Backer, R. Haesen, J. Vanthienen, M. Snoeck, and B. Baesens, “Classification with ant colony optimization,”IEEE Trans. on Evolutionary Computation , vol. 11, pp.651-665, Oct.2007.
[17] A.T. Ghanbarian, E. Kabir, and N.M. Charkari,“Colorreductionbasedon ant colony,”Pattern Recognition Letters, vol.28, pp.1383-1390, Sep.2007.
[18] M. Dorigo, and T. Stutzle,Ant Colony Optimization, Cambridge: MIT Press, 2004.
[19] M. Dorigo and L.M. Gambardella, “Ant Colony System:acooperativelearning approachto the traveling salesman problem,”IEEETrans.on Evolutionary Computation ,vol.1, pp.53-66, Apr.1997.
[20] T. Stutzle, and H. Holger H, “Max-Min ant system,”FutureGenerationComputerSystems, vol.16, pp.889-914, Jun.2000.
[21] J. Tian,W. Yu, S. Xie,“An Ant Colony OptimizationAlgorithmForImage Edge Detection,”IEEECongressonEvolutionary Computation, pp. 751-756, June.2008.
[22] N. Otsu,“A threshold selection method from gray level histograms,”IEEE Trans. Syst. Man, Cybern, vol.9, pp.62-66, Jan.1979.
[23] A.V. Baterina, C. Oppus,“Image edge detection usingantcolonyoptimization,”WSEAS Transactionson Signal Processing, Issue.2, vol.6, pp.58-67, Apr.2010.
[24] H. Nezamabadi-pour, S. Saryazdi, and E. Rashedi,“ Edgedetectionusingantalgorithms, ”Soft Computing, vol.10, pp.623-628, May.2006.
[25] J. Zhang, K. He, X. Zheng, J. Zhou, “ An Ant Colony Optimization Algorithm for Image Edge Detection” International Conference on Artificial Intelligence and Computational Intelligence(AICI), Conference Publications, vol. 2, pp. 215-219, Oct. 2010. | ||
آمار تعداد مشاهده مقاله: 13 تعداد دریافت فایل اصل مقاله: 26 |