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ABSTRACT: 

This paper proposes a backstepping terminal sliding mode control with adaptive algorithm which applied to Quadrotor 

for free chattering, finite time convergence and robust aims. First of all, dynamic equation of a quadrotor has been 

obtained based on Euler-Lagrangian equations with considering additional disturbance and uncertainty. Furthermore, a 

nonlinear control scheme has been proposed to deal against defined perturbations. In the proposed control scheme, 

instead of using regular control input, the derivative of the control input has been achieved from terminal second-layer 

sliding surface. An adaptive algorithm has been used to achieve the robust performance against external disturbances 

like wind effects. The adaptive control law estimates the upper bound of disturbance and uncertainty. Stability and 

robustness of the proposed controller have been proved by using the classical Lyapunov criterion. The simulation 

results demonstrate the validation of the proposed control scheme. 
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INTRODUCTION 1.  
In the past few years, the interest in Unmanned Aerial 
Vehicle (UAV), especially quadrotor, has been grown 
strongly. The design of flight controller which can offer 
the accurate and robust performances to UAVs is an 
important step in the design of fully autonomous 
vehicles. Fixed wing UAVs have been used in 
surveillance and different missions for years, but their 
lack of stationary flight capability has shifted the focus 
of engineers to the vertical Take-Off and Landing 
(VTOL) vehicles offering ability to hover above a 
target. Quadrotor vehicle is one of the most important 
VTOL vehicles which can reach a stable hovering and 
flight using the equilibrium forces produced by four 
rotors. One of the advantages of the quadrotor 
configuration and flight is the maneuver possibility 
against other kind of UAVs.  
Different control methods have been explored for the 
attitude and position control of quadrotor. The dynamic 
model used in this paper is based on the model which 
presented in [1]. Reference [2] has applied backstepping 
and conventional sliding mode which is easy to 
implement practically. Many researchers have worked 
on backstepping control for quadrotor stabilization [3]. 
Integral backstepping also has been used in [4-5]. Most 
of the important common techniques which have 
applied for a quadrotor are based on the sliding mode 
design which can suppress the effects of uncertainty and 

bounded disturbances. Sliding mode control has been 
used for ensuring desired tracking trajectories [6]. 
Robustness is an important issue about quadrotor flight 
in the outdoor situation. Reference [7] has proposed 
sliding mode control for flight control in the presence 
of disturbances. Nonlinear disturbance observer has 
been presented for a quadrotor in [8]. Super twisting 
algorithm has been applied for a quadrotor in [9]. 
Adaptive algorithms are used for online estimate of 
some parameters. Adaptive sliding mode control has 
been used for trajectory tracking under the underground 
effects and noisy sensors in [10]. PD-2 feedback 
controller has been applied for the compensation of the 
Coriolis and gyroscopic torques [11-12]. Direct 
approximate-adaptive control, using CMAC nonlinear 
approximation has been presented and robustness 
properties to disturbances and unknown payloads 
achieved [13]. Reference [14] has proposed robust 
adaptive control based on baseline control combining 
with model reference adaptive control for quadrotor 
application.    
In this paper, an innovative control scheme is proposed 
for robust and finite time convergence of the quadrotor 
attitudes and altitude. This control algorithm decreases 
chattering effect and improves transient response. This 
paper proposes a new attitude and altitude control 
approach for a quadrotor based on second order sliding 
mode control theory which uses an adaptive tuning law. 
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The main attributes of proposed controller are 
robustness, finite time stabilization and free chattering 
control input. An adaptive tuning law is used for the 
controller to estimate the unknown but bounded system 
uncertainties and disturbances. The main contribution of 
this work is proposing integral backstepping which is 
combined with terminal second layer sliding mode and 
uses adaptive scheme to reach the mentioned aims. The 
authors emphasizes that the proposed control scheme is 
different with conventional adaptive backstepping 
sliding mode and numerical simulations have been 
carried out to the high performance of the proposed 
controller. 
The paper is organized as follows. In Section 2, a brief 

description of the system model is given. Some 

assumptions and Lemmas are provided in Section 3. 

The proposed controller for attitude and altitude of the 

controller is designed in Section 4 and its stability is 

also proved. Simulation results and experiments are 

provided in Section 5. And finally conclusion is made. 

 

DYNAMIC MODELLING 2.  

In this section, the basic state-space model of the 

quadrotor is described. The dynamics of the four rotors 

are much faster than the main system and thus 

neglected in this case. The generalized coordinates of 

the rotorcraft are   (           ), where ξ  
 (     )     represents the relative position of the 

rotorcraft with respect to an inertial frame and η  
 (     )     are the three Euler angles representing 

the orientation of the rotorcraft, called yaw, pitch and 

roll of the vehicle. Considering kinetic and potential 

energy of system, let us define Lagrangian as  

 (   ̇)               , where        
 

 
ξ̇
 

ξ̇ is the 

translational kinetic energy,      
 

 
η̇
 

  η̇ is the 

rotational kinetic energy,       is the potential 

energy,   is the quadrotor altitude,   is acceleration of 

gravity,   is the mass of quadrotor and   is the 

auxiliary matrix expressed in terms of η. 
The dynamic of quadrotor is obtained from Euler-
Lagrangian equations with considering external forces 

  (    ) as follows: 
 

  

  

  ̇
 
  

  
                                                       (1) 

By neglecting body forces because of their small 
amplitude, we have  

 ̂  (
 
 
 
+                                                              (2) 

The main thrust is described as below 

                                                      (3) 
Where        

            and    are positive 
constants and   is the angular speed of each motor. 

Then    can be rewritten as      ̂, where   is 

translational matrix which van be shown as following: 

  

(

             
                                 
                                 

+  

 (4) 
Where   and   denote     and     respectively. 

 

The generalized torque for the η variables are defined 

as 

  (

  
  
  
+                                                              (5) 

Where 

   ∑    
 
                                                        (6) 

   
  (           )                                 (7) 

   (     )                                                     (8) 

   (     )                                                    (9) 

Thus, the control distribution from the four actuator 

motors of the quadrotor is given by 

(

 
  

  
  

,  (

                 
                  
                   
               

,(

  
  
  
  

,                  (10) 

Where   is the distance from the motors to the center of 
gravity and   is a constant known as force-to-moment 
scaling factor. 
Totally, the dynamic model of quadrotor can be 

obtained by the following equations. 

 ξ̈ (
 
 
  
+                                                   (11) 
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  ̈   ̅(   ̇)                                                    (14) 

 ̅(   ̇)  ( ̇  
 

 

 

  
( ̇   ))  ̇   (   ̇) ̇        (15) 

 
By substituting    with equation (11), the state-space of 

translation motion with external disturbances in z-axis 
can be obtained as following     

(
 ̈
 ̈
 ̈
+   (

 
 
 
+  

 

 
(
   
     
     

+   ( )              (16) 

The external disturbances has been considered in z-axis, 
because of the purpose of this paper is just altitude 
control in terms of position control.  ( ) can be 
considered as acceleration of external wind   ( ) which 
can effect on position control. 
Moreover, the dynamic model of quadrotor in terms of 
rotation with considering uncertainty is written as 
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(

 ̈

 ̈
 ̈

)   (     )   (     )    (     )  

(17) 

Where    is a vector of uncertainty can simply 
added to rotational equations and we have  

 (     )  
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Where               ,        are body inertia 

and    is propeller rotor inertia.  

To avoid repetition in terms of attitude and altitude 

control state-space model of Euler angles (Roll, Pitch 

and Yaw) is added to height of quadrotor and it is 

considered as follows 

 ̇         

  ̇     ( )    ( )          ,            

                                             
                               (20) 

Where       (       )
 ,     ( ̇  ̇  ̇  ̇)

 , 

    (             )
 ,   ( )  (        ( ))

  and 
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 for         . 

 

PRELIMINARY  3.  

3.1.  Lemmas 
Following Lemmas are required for some mathematical 
aspects of controller design: 

 

Lemma1. [15] For      ,            ,       

is a real number, then the following inequality holds: 

(|  |  |  |    |  |)
  |  |

    |  |
   

 (21)   
Lemma 2. [16] Assume that a continuous, positive 

definite function  ( )  satisfies the following 

differential inequality: 

 ̇( )       ( )                 (  )            (22)                                
             
Where    ,       are two constants. Then, for 

any given   ,  ( )  satisfies the following inequality: 

    ( )      (  )   (   )(    )         
                                                                     (23)                                          
and  ( )              with    given by 

      
    (  )

 (   )
                                               (24) 

3.2.  Assumptions 

The following assumption is defined for uncertainty and 
disturbance of system. 
A1. All states of quadrotor system are measurable. 

A2. The derivative of the external disturbances  ̇ ( ) 

and uncertainties 
 

  
(   ) are bounded and maximum 

bound of them is defined by    for          . 

 
CONTROLLER DESIGN AND STABILITY 4.  

ANALYSIS 
The aim of developing a sliding mode controller is to 
achieve robustness against uncertainty. The sliding 
mode control can be used upon regulatory variables to 
bring the new variables to the equilibrium state. 
However, high frequency chattering in the control input 
is the problem which can cause instability to the system 
by exciting unmodeled dynamics and even leads to 
breakdown. Defining second layer sliding mode by 
terminal sliding mode let control input obtained by 
integrating the discontinuous signal of conventional 
sliding mode. In order to achieve this continuous control 
signal, integral backstepping method is combined with 
second terminal sliding mode control. Moreover, 
adaptive method is used to achieve robustness and better 
response.   
First, the whole system dynamic is redefined based of 
some error variables. The error equation is defined as 

         and the integral variable as   ̇     is 
added to error dynamics of the system and it will be 
known as integral augmented state.    is the desired 
command of each state. 
The control scheme of proposed control is designed in 
the following: 
The error dynamic of system can be rewritten as 
following equations 

  ̇          

 ̇         
  ̇     ( )    ( )          ,           

                      (25) 
Derivative of error equation is 

 ̇      ̇      ̇(    )       ̇(    )       (26) 

Let      be a virtual input which should be stabilized. 
Lyapunov candidate is introduced as 

      ∑ (     
       

 ) 
                             (27) 

Following state feedback control proposed  

            ̇(    )                           (28) 

Where     are positive constants. 
Then the derivative of    is obtained as below 

 ̇  ∑(         ̇           ̇    )

 

   

 

 ̇  ∑ (      (           ̇(    ) ))
 
        (29) 

Substituting equation (28) to derivative of Lyapunov 
function, it yields following 

 ̇   ∑          
  

                                          (30) 
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Here, it is assumed that variable       converges to zero 
in short finite time via following designed sliding mode 
method. Where, errors of virtual inputs is defined as  
             , where            ̇(    )  
        and closed loop system is obtained as  ̇     
                      ̇(    )         . 

The proposed controller is improved based on finite 
time approach, terminal second order sliding mode and 
adaptive control. This controller provides the complete 
compensation of the uncertainty and disturbance of the 
quadrotor. Since the virtual control and the stabilizing 
function derived are obviously not equal. First-layer of 
sliding surface is defined in terms of integral sliding 
which can converge the errors of virtual inputs to zero. 
So conventional sliding surface [17] with integral state 
is defined as following equation [18] 

    (
 

  
   )

   

∫                                      (31) 

Where   is chosen 2,    are positive constants and then, 
it is obtained as 

           ∫         
 

 
                                (32) 

The derivative of sliding surface is obtained as  

 ̇   ̇                                                     (33) 
and  ̇  is 

 ̇      ̇    ̇  
             ( )    ( )           ̇  
                                                                      (34) 
Using the derivative of control input for the 
development of the control law, leads the system to 
reduce the chattering phenomena. Terminal sliding 
surfaces are chosen as [19] to guarantee the sliding 
surfaces converge to zero in finite time and achieve the 
second-order sliding mode control. In this paper a 
second-layer terminal sliding mode surface is 
considered as follows 

    ̇    |  |
      (  )                                (35) 

Where    are positive constants and         . 
When second-layer sliding surface converge to zero 
each integral sliding surface in Eq. (35) will converge to 
zero in finite times [20] which the time is 

    
|  ( )|

    

   (    )
                                                   (36) 

While the second-layer terminal sliding surfaces 
converge to zero, it guarantees the finite time 
convergence of first sliding surfaces. The derivative of 
second-layer is obtained as 

 ̇   ̈      |  |
     ̇                                      (37) 

Where  

 ̈   ̇                                                         (38) 
The design of the proposed control scheme is 

                                                       (39) 
Where    is equivalent control which is obtained from 
the derivative of second terminal sliding mode (35),    
is adaptive switching control which makes second-layer 
terminal sliding surface stable in finite time and    is 
designed to ensure finite time convergence of tracking 
error for states and their integrals. Actually, the control 

input is achieved from integrating discontinuous signal 
and eliminate chattering effect. Control signals are 
defined as following based on Eq. (20) 

 ̇     
  ( )(   ̇( )  ( ̇ ( )   )   ̈  

            |  |
     ̇ )                                    (40) 

Where   
  ( )    from Eq. (20) and  ̇ ( ) are zero for 

        in terms of constant inertia. 

     ∫  
     ̂      (  )                             (41) 

Where  ̂  are estimation for   which are upper bound of 
uncertainties or disturbance for          . And the 
error between estimate value and real one is defined as 

 ̃   ̂   . Estimation laws are 

 ̇̂     |  |                                                          (42) 
where      . 

     (  
  ) ∫

    

‖ ‖ 
                                      (43) 

  [           ]
                                             (44) 

  ∑ (   |     |     |     |)
 
                       (45) 

The proposed control law in Eq. (40) and (41) with the 
adaptation laws in Eq. (42) will guarantee time 
occurrence of sliding motion, which is proved in the 
following theorem. 
Theorem1. Considering assumption (A2), if the system 
errors are controlled with control law (39) and the 
adaptation laws (42), then states of system   ,    and 
sliding surface of virtual control    will move toward 
zero in a finite time     started in any initial point. 

    
 (∑      

 ( )      
 ( )   

 ( ) 
 

  
( ̂ ( )   )

  
   *

   

   (  √    √      √    √ )
       

    (46) 
Proof. Choose a positive definite function in the form 

of 

   ( )     
 

 
∑ (  

  
 

  
 ̃ 
 ) 

                      (47) 

where               ,   ̃   ̂     are estimate errors 

for           and  ̇    because of their slow 
change. Taking the time derivative of    ( ),  

 ̇ ( )  ∑ (  ̇               ̇        ̇  
 
   

 

  
 ̇̂  ̃ )                                                               (48) 

Substituting  ̇  from Eq. (29) and the adaptation laws 
have been shown in Eq. (42), into the Eq. (48), we have 

 ̇ ( )  ∑ (       
     ̇  

 

  
   |  |   ̃ )

 
    (49) 

 ̇ ( )  
∑ (          

    ( ̈      |  |
     ̇ )  

 
   

                                         
  

  
 |  |   ̃ )                     (50) 

According to the equation (38) 

 ̇ ( )  ∑ (          
    ( ̇         

 
   

     |  |
     ̇ )  

  

  
 |  |   ̃ )                           (51) 

Substituting Eq. (34) and taking derivative of it, make 
the following 

 ̇ ( )  ∑ (          
    (  ̇( )    ( ) ̇  
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 ̇     ̇    ̇   ̈            |  |
     ̇ )  

  

  
 |  |   ̃ )   (52) 

using assumption (A2) and by introducing   ,  

 ̇ ( )  ∑(          
 

 

   

   (   ̂      (  )  
    
‖ ‖ 

   *  
  
  
 |  |   ̃ ) 

 

 ̇ ( )  ∑ (          
    (   ̂      (  )  

 
   

      (  )       (  )  
    

‖ ‖ 
   )  

  

  
 |  |   ̃ )                                                              (53) 

using the fact ∑   (
    

‖ ‖ 
) 

      and   ̂     (  )  

      (  )    ̃     (  ), it is obtained that 

 ̇ ( )  ∑ (          
    (  ̃     (  )  

 
   

                  (  )  
    

‖ ‖ 
)  |  |   

  

  
 |  |   ̃ )  

          (54) 

 ̇ ( )  ∑ (  ̃ |  |    |  |  |  |     
 
   

  

  
 |  |   ̃ )                                                              (55) 

 ̇ ( )  ∑ ( (     )|  |  ̃ ( |  |  
 
   

  

  
 |  | )   )                                                    (56) 

According to the Reference [21], There always exists 

     such that  ̃   . It yields from Eq. (56) 

 ̇ ( )  ∑ ( (     )|  |  (|  |  
 
   

  

  
 |  | )  | ̃ |  (  |  |    |  |))                   (57) 

There always exists    and    such that       and 
     , which yields      and     . Where 

         and    |  |  
  

  
 |  |. Then  

 ̇ ( )  ∑ (   |  |     | ̃ |    |  |  
 
   

  |  |)  

 ̇ ( )  ∑ (    √  
|  |

√ 
    √    

| ̃ |

√   
  

   

  √  
|  |

√ 
      √  

|  |

√ 
*                                    (58) 

And finally,  

 ̇ ( )  

    (  √    √      √    √ )∑ ( 
|  |

√ 
  

   

| ̃ |

√   
  

|  |

√ 
  

|  |

√ 
*                                                 (59) 

  ̇ ( )      (  √    √      √    √ )    
   

    

     (60) 
Therefore, from lemma (2), the error trajectory   ( ), 
the integral error   ( ) will converge to zero, and errors 
of virtual control will converge to the second order 
sliding surface   ( )    in the finite time     

 (∑      
 ( )      

 ( )   
 ( ) 

 

  
( ̂ ( )   )

  
   *

   

   (  √    √      √    √ )
. When second 

terminal sliding surface converge to zero, virtual control 
input converge to integral sliding surface   ( )    in 
finite time (   ).  
It is quite clear that Lyapunov function candidate like 

  ( )  
 

 
∑ (  

  
 

  
 ̃ 
 ) 

    is also finite time stable. 

Therefore, variables       converge to zero in small 
finite time and equation (30) can be obtained easily. 
Remark1. It can be seen in equation (35) that  ̇  
contains the term |  |

     ̇  which has negative 
functional power     , for           and so the 
singularity may occur if   ( )    and  ̇ ( )   . 
However, once the system enters the sliding mode, this 
situation will never occur because when   ( ) is equal 
to zero then, leads to  ̇     |  |

      (  ) and the 
term change to |  |

     ̇   |  |
       |  |

      (  ) 
and it obtains as     |  |

         (  ); and it can be 
seen that if         , this term will be nonsingular. 
Therefore, the singularity just may occur in the reaching 
phase. 
To solve this problem, the approach which was 
proposed in Reference [22] is used. 

|  |
     ̇  

{

|  |
     ̇           ( )           ̇ ( )    

|  |
     ̇          ( )          ̇ ( )   

                        ( )           ̇ ( )   

  (61) 

 

Remark2. For 3D trajectory tracking, as usually   , 

   and    have been used for the control of the 

quadrotor motion in x-y plane. In this paper, the 

attitude and altitude of the quadrotor have been 

controlled, but the relation between attitudes and 

position of the quadrotor can simply be calculated.  

 

SIMULATION 5.  
Simulation studies have been performed in order to test 
the proposed control strategy when the quadrotor 
helicopter goes to special height and rotate around one 
of its axis and then returns to initial height. Structural 
uncertainty and external time varying disturbances have 
been considered. The experiment is designed as 
following 
The quadrotor start from initial attitude 
(           ) rad and initial altitude      m begin 
and at 7s later it goes to 10 m in height and start to 
rotate around x-axis as sinusoidal function for 23 s and 
finally, return to initial height. 
MATLAB/SIMULINK software is used to solve 
algebraic equations by ODE45. Table.1 shows 
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quadrotor parameter and controller parameters have 
been designed as following. 
    ,     ,     ,       
      ,       ,       ,        
 
     ,     ,     ,       
     ,     ,     ,      
     ,          for           
 
Following nonlinear functions have been chosen for 
uncertainty and disturbances.  

        (   ) for        .                             (62) 

     ( )       ( )  for          .   (63) 

 
Table 1. Quadrotor parameters 

Parameter  
description 

Parameter Value 

Mass of the 
quadrotor 

  0.65 (kg) 

Distance between 
the mass center and 

rotors 
  0.23 (m) 

Gravitational 
acceleration 

  9.81(m/  ) 

Moment of inertia 
around the x-axis 

   0.0075 kg    

Moment of inertia 
around the y-axis 

   0.0075 kg    

Moment of inertia 
around the z-axis 

   0.013 kg    

Moment of inertia 

around the 

propeller axis 

   
0.000065 kg 

   

 
Fig. 1 shows trajectory tracking for height control in 
presence external disturbances which described in Eq. 
(62) and occurs in 20 seconds. Time response of 
quadrotor height shows robustness and suitable transient 
properties. 
Disturbances is compensated soon as soon adaptive 
coefficient grows in Fig. 2. Control inputs have been 
illustrated in Fig. 3 and 4 show less sensitivity of 
response to chattering effect that usually happen in 
equilibrium point of sliding surface. 
Fig. 5 and 6 show transient state response and steady 

state of Euler angles. Finally controller parameters 

estimateion have been shown in Fig. 7 in presence of 

uncertainties. Fig. 8 illustrates the tracking response of 

angular velocities, as it is obvious they have been 

converged to their desired value in the presence of 

uncertainty.  

 
Fig. 1. Time responses of quadrotor height trajectory 

tracking 

 

Fig. 2. Time response of    estimation 

 

Fig. 3. The control inputs for attitude control 
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Fig. 4. Control signal for height control 

 

Fig. 5. Time response of the Pitch and Yaw angle. 

 

Fig. 6. Time response of the Roll angle. 

 

Fig. 7.The estimated parameters   ̂ ,  ̂  and  ̂ . 

 

Fig. 8.Time response of the angular velocities for Yaw 

and Pitch angles. 

CONCLUSION 6.  
In this paper a novel nonlinear control approach has 
been proposed for the quadrotor attitude and altitude 
control. Euler angles and the height of the quadrotor 
have been stabilized globally to track reference inputs 
with finite time approach. Integral backstepping sliding 
mode has been combined with terminal sliding mode 
and adaptive algorithms to achieve the robust and 
accurate performance. Unknown bounds of limited 
uncertainty and disturbance have been estimated via 
adaptive control while a special flight scenario is 
considered for the quadrotor. 
The proposed controller demonstrates robust 

performance and also improves the transient response 

of the system’s output. Adaptive gains have been 

converged to upper values of the disturbances and the 

effects of disturbances have been quickly compensated.  
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