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ABSTRACT: 
The internet of Things (IoT) is a promising expansion of the traditional Internet, which provides the foundation for 

millions of devices to interact with each other. IoT enables these smart devices, such as home appliances, different 

types of vehicles, sensor controllers, and security cameras, to share information, and this has been successfully done to 

enhance the quality of user experience. IoT-based mediums in day-to-day life are, in fact, minuscule computational 

resources, which are adjusted to be thoroughly domain-specific. As a result, monitoring and detecting various attacks 

on these devices becomes feasible. As the statistics prove, in the Mirai and Brickerbot botnets, Distributed Denial-of-

Service (DDoS) attacks have become increasingly ubiquitous. To ameliorate this, in this paper, we propose a novel 

approach for detecting IoT malware from the preprocessed binary data using transfer learning. Our method comprises 

two feature extractors, named ResNet101 and VGG16, which learn to classify input data as malicious and non-

malicious. The input data is built from preprocessing and converting the binary format of data into gray-scale images. 

The feature maps obtained from these two models are fused together to further be classified. Extensive experiments 

exhibit the efficiency of the proposed approach in a well-known dataset, achieving the accuracy, precision, and recall 

of 96.31%, 95.31%, and 94.80%, respectively.  

 

KEYWORDS: Internet of Things, Deep Learning, Ensemble Learning, Transfer Learning, Convolutional Neural 

Networks, Malware Detection. 

 

1.  INTRODUCTION 

One of the most influential inventions in the history 

of computer science is the creation of the Internet [1]. It 

is the new driving force of all technologies which exists 

today, no economic and industrial interrelations 

between countries around the globe can be done 

without the Internet [2]. The evolution of the Internet 

has caused a new phenomenon to be born, which is 

called The Internet of Things (IoT) [3]. IoT has been 

considered the future of the Internet, by which a large 
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number of devices can be connected to each other. 

These smart devices can interact with each other and 

share information, and this provides the end-users with 

a better experience [4]. The applications of IoT are 

manifold, ranging from healthcare systems [5], 

automotive, industrial applications [6], transportation 

[7], etc. Before IoT, these devices could only function 

on domain-specific tasks, which were assigned by the 

pre-defined rules. In stark contrast to this, IoT provides 

a Central Processing Unit (CPU)-based environment 

for these mediums, and this can make them more 

intelligent and give them more computational power 

[8]. 

Although IoT has the advantages mentioned above, 

the smartness, which comes with IoT, can open new 

opportunities for adversarial attacks [9]. These 

vulnerabilities have drawn considerable attention from 

the researchers since the potential threatening attacks 

can be a danger for the devices themselves and the 

users who harness these kinds of facilities [10]. It is 

worth mentioning that today’s IoT-based systems are 

far from being thoroughly secured and the main reason 

for this is the lack of a set of unified and standard 

principles for securing various types of hardware and 

software platforms [11]. Additionally, compared with 

machines such as personal computers and laptops, the 

shortage of computational resources on these smart 

devices prevents us from adopting common policies 

normally implemented to make such systems robust to 

attackers [12]. Nonetheless, cloud-based systems can 

give us the opportunity to develop protective modules 

to detect and fight against cyber-attacks. One of the 

biggest examples of such attacks is malware which is 

intentionally made to intrusively enter the victim’s 

machines and steal data or damage the systems. 

Examples of malware are viruses, worms, spyware, 

adware, and trojans [13]. 

So far, a variety of machine learning and deep 

learning-based models have been introduced in the 

literature for detecting and classifying malicious and 

non-malicious malware. In [14], a large-scale system in 

which random projection and a neural network are 

proposed for the classification task is proposed. Their 

results show a minimum of less than 1.00% error rate 

with a 16000 dimension for the random projections. 

Firdausi et al. [15] have analyzed the behavior of 

malware on an emulated environment by extracting 

reports from these behaviors. Then these reports are 

altered into sparse vectors and fed to different machine 

learning-based models for the downstream 

classification task. Their best result belongs to the 

Decision Tree classifier with an accuracy of 96.8%, 

recall of 95.9%, and false-positive rate of 2.4%. In [16], 

a novel lightweight method is proposed for detecting 

IoT botnets. They used a feature extraction process for 

function-call graphs, called PSI-Graph, and these are 

made for each executable file. They achieved an 

accuracy of 98.7% in a dataset containing 11,200 ELF 

files. Alasmary et al., in [17], have designed a malware 

detection system that utilized Control Flow Graphs 

(CFGs). In their study, it was demonstrated that IoT 

malware samples contain a big number of edges with a 

small number of nodes, and this demonstrates a more 

resourceful structure with higher complexity. Their 

achieved results show an accuracy of 99.66%. 

Although the performance of the previous works has 

been remarkably good, the fact that malware images 

can be a reliable way of detecting intrusive actions in 

IoT-based systems is not investigated. Further, the use 

of transfer learning which makes the training phase of 

the CNN-based models is examined, and this can be 

critical where the software and hardware resources are 

in shortage. 

In this paper, in order to address the disadvantages 

of the previous works, we propose a framework for 

detecting malicious and intrusive malware existing in 

the IoT-based models. Our approach functions on the 

images obtained via a preprocessing step on binary 

malware data. Two CNN-based models are utilized in 

order to generate feature maps suitable for binary 

classification of the data into benign and malicious 

classes. The main contributions of this study are 

itemized in the following: 

1. We propose a framework for malicious 

malware in IoT-based models. 

2. We apply the transfer learning technique, 

which makes the training process of the 

proposed approach better and easiest to 

converge. 

3. The dataset used in this study is real-world 

data gathered from real IoT-based 

environments, and this makes our evaluations 

more reliable. 

 

2.  TECHNICAL WORK PREPARATION 

2.1.  Overview 

In this section, we include our proposed 

methodology. Fig. 1 illustrates an overview of our 

approach for feature extraction and classification of the 

data, which is reformatted to act as an image for the 

CNN-based networks. 

 

 
Fig. 1. The overview of the proposed methodology. 

 

As seen in Fig. 1, the data is first pre-processed to 

be prepared for the feature extraction module. This 

module contains two models, each of which generates 

feature maps. Following this, these features are 
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flattened and fused together to be fed to the fully 

connected classification head. 

 

2.2.  Malware Image Classification 

The original format of the data used in this study is 

the format of a malware binary. However, one of the 

most effective ways of extracting patterns in this type 

of data is the conversion to an 8-bit sequence [18]. 

Then, these can be reformatted to become similar to an 

image with only one channel. These images, which are 

gray-scale, can then be fed to CNN-based feature 

extraction modules with the final goal of designing a 

decision-making system that predicts the danger of 

intruders. 

 

2.3.  Preprocessing 

As stated in section 2.2, to prepare our dataset for 

the proposed algorithm, we need to preprocess our data. 

This process is shown in detail in Fig. 2. 

 

 
Fig. 2. Different steps of the preprocessing stage in the 

proposed method. 

 

Further, in order for the proposed model to train 

better, we normalize the images to have a specific and 

fine-tuned standard deviation and mean. These values 

are shown in Table X and are default values for the 

training ResNet in its base paper. 

 

2.4.  Convolutional Neural Networks And Feature 

Extraction 

Convolutional Neural Networks (CNNs), 

introduced in [19], have one most used types of neural 

networks in computer vision [20]. Their performance in 

many challenging tasks such as face recognition [21], 

object detection [22], image classification [23], image 

restoration [24], image captioning [25], industrial 

applications [26], etc., is remarkably good and this 

makes them exclusively fruitful in terms of image 

analysis. Their architecture comprises thousands to 

millions of neurons, where each neuron contributes to 

the learning phase of the whole network by learning a 

set of weights and biases [27]. These neurons reside in 

layers within the network and are called hidden layers 

[28]. The hidden layers in CNN-based models comprise 

convolutional layers, pooling layers, normalization 

layers, and fully connected layers. The core of the 

convolutional layers is the convolution operation, 

which is applied by sliding a kernel over the input data 

to do an element-wise multiplication [29]. The pooling 

layers are used with the goal of dimensionality 

reduction and can be done by taking a single output for 

a cluster of neurons. Moreover, in these models, the 

convolutional part of the model is famously called the 

backbone, which is used for feature extraction 

purposes, and the fully connected ones are used for 

tasks such as classification. 

Heretofore, several CNN-based architectures have 

been introduced in the literature. Two of the most 

known networks are ResNet [30] and VGG [31], each 

of which includes multiple networks with different 

depths and a number of trainable parameters. In the 

following, their structure is elaborated. 

ResNet refers to a family of deep neural 

architectures, which initially came with the object of 

addressing the issue of vanishing gradient issue in deep 

networks [32]. According to the universal 

approximation theorem, it is theoretically accepted that 

a feedforward network containing even a single layer is 

able to represent any function [33]. However, this is not 

feasible since the layer should be extremely large, and 

the network becomes prone to overfitting [34]. This 

conundrum has motivated the research community to 

opt for making the networks deeper with more hidden 

layers. This is where the gradient becomes extremely 

small when it reaches the initial layers in the process of 

backpropagation, and it prohibits us from making the 

designed neural networks more and more deep [35]. 

ResNet addresses this issue by introducing shortcut 

connections [36]. These connections skip several layers 

on their way and, in fact, are integrated with the output 

of the skipped layers, followed by the next layers [37]. 

This means that given x as the input of a layer, its 

output can be defined as equation 1. 

 

F(x) = G(wx + b) (1) 

 

Where G denotes a non-linear activation function. 

However, when we deal with residual blocks within 

ResNet models, equation 1 changes to equation 2, 

where the input x, is added to F(x). Equation 2 

demonstrates this addition. 

 

F(x) = G(wx + b) + x (2) 

 

In this paper, we chose ResNet101. Its architecture 

is illustrated in Fig. 3. As is observed in Fig. 3, ResNet 

101 has four convolutional blocks with skip 

connections between each of them. Immediately before 

and after these blocks, pooling layers exist in the 

model. 
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Fig. 3. The architecture of ResNet101. 

 

Moreover, another type of CNN-based model is 

called VGG, which refers to a family of deep neural 

network-based models. VGG models’ main novelty is 

the use of a minuscule kernel size of 3*3 in the first 

hidden layers [38], which contradicts the large 

receptive fields in some other models such as AlexNet 

[39]. This small kernel is repeated throughout the 

network with a stride of 1 in each convolutional layer. 

The main advantage of this is the usage of multiple 

activation functions since the number of layers is 

bigger, which helps the model's non-linearity and 

makes it easier to learn more discriminative features. 

Fig. 4 shows the architecture of a specific type of 

VGG-based model named VGG16. 

 

 
Fig. 4. The architecture of VGG16. 

2.5.  Transfer Learning 

Transfer learning is a machine learning technique 

that effectively transfers knowledge developed by a 

network to another domain [40]. In this technique, we 

train a neural network on a large amount of data and 

then repurpose it for a different set of data. Transfer 

learning gives us the opportunity to ramify the problem 

of a small number of training samples in a specific task 

[41]. The most common way of knowledge transfer in 

the field of computer vision is to train a CNN-based 

model on a huge number of training images such as 

ImageNet and then start the training related to our 

specific task with parameters initialized by the 

pretrained values. The most notable advantage of 

transfer learning is that, by adopting this technique, we 

can achieve better results in a less number of epochs 

with better convergence. In this study, we adopted 

transfer learning with the aim of optimizing our 

training procedure. We trained ResNet101 and VGG16 

on the images of the ImageNet dataset converted to 

grayscale ones. 

 

3.  EXPERIMENTAL RESULTS 

3.1.  Experimental Setup 

In this study, we have used Python 3.7 as the 

programming language for implementing the proposed 

approach. In addition to this, the deep learning 

framework which is used for training and the 

implementation of the models is Pytorch 1.10. The 

machine used in this paper had Intel® Core™ i7-10450 

CPU @ 2.80 GHz × 8 for its CPU and GeForce GTX 

1050 for its Graphical Processing Unit (GPU). 

 

3.2.  Dataset 

For training and evaluation of our proposed 

methodology, we used a dataset collected from two 

Information Technology (IT)-based companies in Iraq, 

named Jiasaz and Lucid. Our dataset contains 3000 

malware samples and 3000 benign or non-malicious 

samples collected from Ubuntu 20.04.2.  We have used 

an 80-20 policy for splitting our data into train and test 

sets. Table 1 shows the distribution of our data. 

 

Table 1. The train, validation, and test distribution of 

the data used in this paper. 

 Total Train Validatio

n 

Test 

Non-

malicious 

3000 1920 480 600 

Maliciou

s 

3000 1920 480 600 

 

 

3.3.  Hyperparameters Setting and Implementation 

Details 

Table 2 details the list of the hyperparameters 

chosen in order to optimize the approach. As is seen, 

we have used an Adam optimizer to optimize the 

network's learnable parameters with a learning rate 0f 

0.004. 

 

Table 2. Hyperparameters. 

Image size  256 

Epoch 20 

Batch size 64 

Normalization standard 

deviation for image 

preprocessing 

0.229 

Normalization mean for 

image preprocessing 

0.485 

Optimizer  Adam 

Learning rate for the 

optimizer 

0.004 

Loss function Binary Cross-Entropy 

Last layer Sigmoid 

 



Majlesi Journal of Electrical Engineering                                                                   Vol. 16, No. 3, September 2022 

 

51 

 

In the training stage, we first trained the ResNet101 

and VGG16 models on the grayscale version of the 

ImageNet dataset. After that, we freeze the first three 

blocks of both models and train them together in an 

end-to-end fashion to fine-tune our target data. 

 

3.4.  Classification Results 

This section includes the results achieved by our 

proposed approach. Specifically, we evaluated our 

methodology using the metrics detailed in Table X. The 

metrics introduced in Table 3 are the most frequent 

ones used in the classification tasks and represent a 

trustworthy evaluation of any classifier’s performance. 

 

Table 3. Classification metrics used in this study. 

Metric name Description 

True Positive (TP) Samples that are correctly 

predicted as malicious 

True Negative (TN) Samples that are correctly 

predicted as non-

malicious 

False Positive (FP) Samples that are wrongly 

predicted as malicious 

False Negative (FN) Samples that are wrongly 

predicted as non-

malicious 

Confusion matrix A matrix demonstrating 

TP, TN, FP, and FN and 

used for performance 

analysis in classification 

tasks  

Accuracy TP+TN
TP+TN+FN+FP

 

Precision TP
TP+FP  

Recall TP

TP+FN
 

F1-Score 2∗ precision∗ recall
precision+recall

 

AUC-ROC The Area Under Curve for 

Receiver Operator 

Characteristic at various 

thresholds 

 

Based on the metrics introduced above, Fig. 5 and 

Table 4 demonstrate the confusion matrix and the 

results achieved by our approach, respectively. 

Additionally, Fig. 6 and Fig. 7 show the training and 

validation accuracy vs. epoch curves and training and 

validation loss vs. epoch, respectively. Also, Fig. 8 

illustrates the AUC-ROC for the proposed classifier. 

 

Fig. 5. The confusion matrix achieved by the proposed 

classifier. 

 

Table 4. Classification metrics used in this study. 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

AUC-

ROC 

93.58 94.39 92.67 93.52 0.97 

 

 

 
Fig. 6. Epoch vs. Accuracy for the training and 

validation set. 

 

 
Fig. 7. Epoch vs. Loss for the training and validation 

set. 
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Fig. 8. AUC-ROC curve for the proposed classifier. 

 

Moreover, to demonstrate our proposed 

framework's efficiency, we have compared our results 

with those of the previous works. As is seen in Table 5, 

the results achieved by our methodology are 

competitive in comparison with the other 

methodologies existing in the literature.  

 

Table 5. Comparison with previous works, 

Work method Accuracy Inference 

time (s) 

[42] RIPPER 99.80 0.75 

[43] SVM 97.02 130 

[44] DNN 89.10 139 

[45] PSI-Graph 98.70 107 

[46] CNN 94.00 Not 

reported 

Ours Ensemble 

CNNs 

93.58 0.012 

 

The main advantage of our proposed method is its 

simplicity and minimalistic approach in the training 

phase. Our approach proves the performant outcome of 

transfer learning in the domain of malware image 

classification in that a small number of epochs suit the 

challenges at hand. This shows that the use of transfer 

learning can provide us with an optimized way of 

training for the challenging task of grayscale images 

obtained by preprocessing the binary malware files.  

Furthermore, the proposed model contains less 

trainable parameters since most layers are frozen in the 

main training phase. 

 

4.  CONCLUSION 

This paper proposes an approach based on a 

combination of two CNN models to detect malware. To 

implement our approach, we have used ResNet101 and 

VGG16 as the feature extractor and employed transfer 

learning to have a better training process. We have 

conducted our evaluation on a dataset of 6000 samples 

equally chunked into malicious and benign classes. Our 

experiments demonstrate competitive and satisfactory 

results, proving the proposed approach's efficacy for 

being used in real IoT-based systems as a measurement 

for detecting and preventing harmful intruders and 

attacks. 
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