- Burger W, Burge MJ. “Digital image processing: an algorithmic introduction using Java”. Springer; 2016.
- Huang S, Sun J, Yang Y, Fang Y, Lin P, Que Y. "Robust single-image super-resolution based on adaptive edge-preserving smoothing regularization”. IEEE Transactions on Image Processing, Vol. 27(6), pp. 2650-2663, 2018. http://doi.org/ 10.1109/TIP.2018.2809472
- Yue L, Shen H, Li J, Yuan Q, Zhang H, Zhang L. "Image super-resolution: the techniques, applications, and future”. Signal Processing 2016, 128, pp. 389-408, 2016. https://doi.org/10.1016/j.sigpro.2016.05.002
- Haris M, Watanabe T, Fan L, Widyanto MR, Nobuhara H. “Super resolution for UAV images via adaptive multiple sparse representation and its application to 3-d reconstruction”. IEEE Transactions on Geoscience and Remote Sensing 2017, 55(7) , pp. 4047-4058, 2017. http://doi: 10.1109/TGRS.2017.2687419
- Ayas S, Ekinci M. "Learning based single image super resolution using discrete wavelet transform”. Ininternational conference on computer analysis of images and patterns, pp. 462-472, Springer, cham; 2017.
- Waleed Gondal M, Scholkopf B, Hirsch M. "The unreasonable effectiveness of texture transfer for single image super-resolution”. InProceedings of the European Conference on Computer Vision (ECCV) 2018, pp. 80-97, Springer, Cham.
- Lei J, Zhang S, Luo L, Xiao J, Wang H. "Super-resolution enhancement of UAV images based on fractional calculus and POCS”. Geo-spatial information science 2018, 21(1), pp. 56-66, 2018. https://doi.org/10.1080/10095020.2018.1424409
- Liu H, Fu Z, Han J, Shao L, Liu H. "Single satellite imagery simultaneous super-resolution and colorization using multi-task deep neural networks”. Journal of visual communication and image representation 2018, 53, pp. 20-30, 2018. https://doi.org/10.1016/j.jvcir.2018.02.016
- Han W, Chu J, Wang L, Pan C. "Edge-directed single image super-resolution via cross-resolution sharpening function learning”. Multimedia tools and applications 2017, 76(8), pp. 11143-11155, 2017. https://doi.org/10.1007/s11042-016-3656-z
- Bei Y, Damian A, Hu S, Menon S, Ravi N, Rudin C. “New techniques for preserving global structure and denoising with low information loss in single-image super-resolution”. In the IEEE conference on computer vision and pattern recognition (CVPR) workshops 2018, 874-881, 2018.
- Brifman A, Romano Y, Elad M. "Unified Single-Image and Video Super-Resolution via Denoising Algorithms”. IEEE Transactions on Image Processing 2019, 28(12), 6063-6076, 2019. http://doi.org/10.1109/TIP.2019.2924173.
- Ding N, Liu YP, Fan LW, Zhang CM. "Single Image Super-Resolution via Dynamic Lightweight Database with Local-Feature Based Interpolation”. Journal of Computer Science and Technology 2019, 34(3), 537-549, 2019. https://doi.org/10.1007/s11390-019-1925-9
- Yang W, Zhang X, Tian Y, Wang W, Xue JH, Liao Q. “Deep learning for single image super-resolution: A brief review”. IEEE Transactions on Multimedia 2019, 21(12), 3106-3121. http://doi.org/10.1109/TMM.2019.2919431
- Lu H, Li Y, Nakashima S, Serikawa S. "Single image dehazing through improved atmospheric light estimation”. Multimedia Tools and Applications 2016, 75(24), 17081-17096. https://doi.org/10.1007/s11042-015-2977-7
- Song J, Zhang L, Shen P, Peng X, Zhu G. "Single low-light image enhancement using luminance map”. In Chinese Conference on Pattern Recognition 2016, pp. 101-110. Springer, https://doi.org/10.1007/978-981-10-3005-5_9
- Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Bengio Y. “Generative adversarial nets”. In Advances in neural information processing systems 2014, pp. 2672-2680, 2014.
- Chang HW, Zhang Q W, Wu QG, Gan Y. "Perceptual image quality assessment by independent feature detector”. Neurocomputing 2015, 151, pp. 1142-1152. https://doi.org/10.1016/j.neucom.2014.04.081
- Tuna C, Unal G, Sertel E. "Single-frame super resolution of remote-sensing images by convolutional neural networks”. International Journal of Remote Sensing 2018, 39(8), 2463-2479.https://doi.org/10.1080/01431161.2018.1425561
- Li F, Xin L, Guo Y, Gao J, Jia X. "A framework of mixed sparse representations for remote sensing images”. IEEE Transactions on Geoscience and Remote Sensing 2017, 55(2), 1210-1221. http://doi.org/10.1109/TGRS.2016.2621123
- Fan C, Wu C, Li G, Ma J. "Projections onto convex sets super-resolution reconstruction based on point spread function estimation of low-resolution remote sensing images”. Sensors 2017, 17(2), 362. https://doi.org/10.3390/s17020362
- Lv Z, Jia Y, Zhang Q. "Joint image registration and point spread function estimation for the super-resolution of satellite images”. Signal processing: image communication 2017, 58, 199-211. https://doi.org /10.1016/j.image. 2017. 08.006
- Cruz C, Mehta R, Katkovnik V, Egiazarian KO. "Single image super-resolution based on wiener filter in similarity domain”. IEEE Transactions on Image Processing 2018, 27(3), 1376-1389. http://doi.org/10.1109/TIP.2017.2779265
- Lin G, Wu Q, Chen L, Qiu L, Wang X, Liu T, Chen X. “Deep unsupervised learning for image super-resolution with generative adversarial network”. Signal Processing: Image Communication 2018, 68, 88-100. https://doi.org/10.1016/j.image.2018.07.003
- Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Shi W. “Photo-realistic single image super-resolution using a generative adversarial network”. In Proceedings of the IEEE conference on computer vision and pattern recognition 2017, 4681-4690.
- Zhang X, Song H, Zhang K, Qiao J, Liu Q. "Single image super-resolution with enhanced Laplacian pyramid network via conditional generative adversarial learning”. Neurocomputing 2020, 398, 531-538. https://doi.org/10.1016/ j.neucom .2019.04.097
- Qiao J, Song H, Zhang K, Zhang X. "Conditional generative adversarial network with densely-connected residual learning for single image super-resolution”. Multimedia Tools and Applications 2021, 80(3), 4383-4397. https://doi.org/10.1007/s11042-020-09817-2
- Chen W, Liu C, Yan Y, Jin L, Sun X, Peng X. "Guided Dual Networks for Single Image Super-Resolution”. IEEE Access 2020, 8 :93608-93620. doi: 10.1109/ACCESS.2020.2995175.
- Haris M, Shakhnarovich G, Ukita N. "Deep Back-Projection Networks for Single Image Super-resolution”. IEEE Transactions on Pattern Analysis and Machine Intelligence 2019, 43(12), 4323-4337. http://doi.org/10.1109/ TPAMI.2020.3002836
- Hu Y, Li J, Huang Y, Gao X. "Channel-wise and spatial feature modulation network for single image super-resolution”. IEEE Transactions on Circuits and Systems for Video Technology 2019, 30(11), 3911-3927. http://doi.org/10.1109/ TCSVT.2019.2915238
- Xu X, Li X. SCAN: "Spatial Color Attention Networks for Real Single Image Super-Resolution”. InProceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops 2019.
- Gao S, Zhuang X. "Multi-scale deep neural networks for real image super-resolution”. In proceedings of the IEEE conference on computer vision and pattern recognition workshops 2019.
- Xie C, Liu Y, Zeng W, Lu X. "An improved method for single image super-resolution based on deep learning”. Signal, image and video processing 2019, 13(3) :557-565. https://doi.org/10.1007/s11760-018-1382-x
- Yang W, Wang W, Zhang X, Sun S, Liao Q. “Lightweight feature fusion network for single image super-resolution”. IEEE Signal Processing Letters 2019, 26(4), 538-542. http://doi.org/10.1109/LSP.2018.2890770
- Dai T, Cai J, Zhang Y, Xia ST, Zhang L. "Second-order attention network for single image super-resolution”. In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019, pp. 11065-11074.
- Wang Y, Wang L, Wang H, Li P. "End-to-end image super-resolution via deep and shallow convolutional networks”. IEEE Access 2019, 7, 31959-31970. http://doi.org/10.1109 /ACCESS.2019.2903582
- Xu W, Chen R, Huang B, Zhang X, Liu C. "Single image super-resolution based on global dense feature fusion convolutional network”. Sensors 2019, 19(2), 316. https://doi.org/10.3390 /s19020316
- Fang F, Li J, Zeng T. "Soft-Edge Assisted Network for Single Image Super-Resolution”. IEEE Transactions on Image Processing 2020, 29, 4656-4668. http://doi.org/10.1109/TIP.2020.2973769
- https://deepai.org/dataset/set5-super-resolution (Accessed 20 May 2022)
- https://deepai.org/dataset/set14-super-resolution (Accessed 20 May 2022)
- https://deepai.org/dataset/bsd100-4x-upscaling (Accessed 20 May 2022)
- Guo X, Li Y, Ling H. "LIME: Low-light image enhancement via illumination map estimation”. IEEE Transactions on Image Processing 2017, 26(2), 982-993. http://doi.org/10.1109/TIP.2016.2639450
|