- Jokar, N. Arianpoo, and V. C. M. Leung, “Electricity theft detection in AMI using customers’ consumption patterns,” IEEE Trans. Smart Grid, Vol. 7, No. 1, pp. 216–226, 2016, doi: 10.1109/TSG.2015.2425222.
- Ghaedi, S. R. K. Tabbakh, and R. Ghaemi, “Improving Electricity Theft Detection using Combination of Improved Crow Search Algorithm and Support Vector Machine,” Majlesi J. Electr. Eng., vol. 15, no. 4 SE-Articles, Dec. 2021, doi: https://doi.org/10.52547/mjee.15.4.63.
- Askarzadeh, “A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm,” Comput. Struct., Vol. 169, pp. 1–12, 2016, doi: 10.1016/j.compstruc.2016.03.001.
- Razavi, A. Gharipour, M. Fleury, and I. J. Akpan, “A practical feature-engineering framework for electricity theft detection in smart grids,” Appl. Energy, Vol. 238, No. December 2018, pp. 481–494, 2019, doi: 10.1016/j.apenergy.2019.01.076.
- Feng, J. Huang, W. H. Tang, and M. Shahidehpour, “Data mining for abnormal power consumption pattern detection based on local matrix reconstruction,” Int. J. Electr. Power Energy Syst., Vol. 123, No. February, p. 106315, 2020, doi: 10.1016/j.ijepes.2020.106315.
- Ghaedi, S. R. Kamel Tabbakh Farizani, and R. Gaemi, “A Novel Meta-heuristic Framework for Solving Power Theft Detection Problem: Cheetah Optimization Algorithm,” Int. J. Ind. Electron. Control Optim., Vol. 5, No. 1, pp. 63–76, 2022, doi: 10.22111/ieco.2022.39528.1370.
- Ullah, N. Javaid, A. S. Yahaya, T. Sultana, F. A. Al-Zahrani, and F. Zaman, “A Hybrid Deep Neural Network for Electricity Theft Detection Using Intelligent Antenna-Based Smart Meters,” Wirel. Commun. Mob. Comput., Vol. 2021, p. 9933111, 2021, doi: 10.1155/2021/9933111.
- M. Ibrahim, S. T. F. Al-Janabi, and B. Al-Khateeb, “Electricity-theft detection in smart grids based on deep learning,” Bull. Electr. Eng. Informatics, Vol. 10, No. 4, pp. 2285–2292, 2021, doi: 10.11591/EEI.V10I4.2875.
- Nazmul Hasan, R. N. Toma, A. Al Nahid, M. M. Manjurul Islam, and J. M. Kim, “Electricity theft detection in smart grid systems: A CNN-LSTM based approach,” Energies, Vol. 12, No. 17, pp. 1–18, 2019, doi: 10.3390/en12173310.
- Li, Y. Han, X. Yao, S. Yingchen, J. Wang, and Q. Zhao, “Electricity Theft Detection in Power Grids with Deep Learning and Random Forests,” J. Electr. Comput. Eng., Vol. 2019, 2019, doi: 10.1155/2019/4136874.
- Kocaman and V. Tümen, “Detection of electricity theft using data processing and LSTM method in distribution systems,” Sadhana - Acad. Proc. Eng. Sci., Vol. 45, No. 1, 2020, doi: 10.1007/s12046-020-01512-0.
- M. Rouzbahani, H. Karimipour, and L. Lei, “An Ensemble Deep Convolutional Neural Network Model for Electricity Theft Detection in Smart Grids,” Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern., Vol. 2020-Octob, pp. 3637–3642, 2020, doi: 10.1109/SMC42975.2020.9282837.
- Zheng, Y. Yang, X. Niu, H. N. Dai, and Y. Zhou, “Wide and Deep Convolutional Neural Networks for Electricity-Theft Detection to Secure Smart Grids,” IEEE Trans. Ind. Informatics, Vol. 14, No. 4, pp. 1606–1615, 2018, doi: 10.1109/TII.2017.2785963.
- Chandel and T. Thakur, “Smart Meter Data Analysis for Electricity Theft Detection using Neural Networks,” Adv. Sci. Technol. Eng. Syst. J., Vol. 4, No. 4, pp. 161–168, 2019, doi: 10.25046/aj040420.
- Feng et al., “A novel electricity theft detection scheme based on text convolutional neural networks,” Energies, Vol. 13, No. 21, pp. 1–17, 2020, doi: 10.3390/en13215758.
- Maamar and K. Benahmed, “A Hybrid Model for Anomalies Detection in AMI System Combining K-means Clustering and Deep Neural Network,” Comput. Mater. Contin., Vol. 60, No. 1, pp. 15–39, 2019, doi: 10.32604/cmc.2019.06497.
- Fouad, M. Alfonse, M. Roushdy, and A. B. M. Salem, “Hyper-parameter optimization of convolutional neural network based on particle swarm optimization algorithm,” Bull. Electr. Eng. Informatics, Vol. 10, No. 6, pp. 3377–3384, 2021, doi: 10.11591/eei.v10i6.3257.
- Bacanin, T. Bezdan, E. Tuba, I. Strumberger, and M. Tuba, “Optimizing convolutional neural network hyperparameters by enhanced swarm intelligence metaheuristics,” Algorithms, Vol. 13, No. 3, 2020, doi: 10.3390/a13030067.
- Brodzicki, M. Piekarski, and J. Jaworek-Korjakowska, “The whale optimization algorithm approach for deep neural networks,” Sensors, Vol. 21, No. 23, 2021, doi: 10.3390/s21238003.
- Han, A. Tan, and J. Zhong, “Application of Particle Swarm Optimization Combined with Long and Short-term Memory Networks for Short-term Load Forecasting,” J. Phys. Conf. Ser., Vol. 2203, No. 1, 2022, doi: 10.1088/1742-6596/2203/1/012047.
- H. Kim, Z. W. Geem, and G. T. Han, “Hyperparameter optimization method based on harmony search algorithm to improve performance of 1D CNN human respiration pattern recognition system,” Sensors (Switzerland), Vol. 20, No. 13, pp. 1–20, 2020, doi: 10.3390/s20133697.
- Serizawa and H. Fujita, “Optimization of Convolutional Neural Network Using the Linearly Decreasing Weight Particle Swarm Optimization,” ArXiv, Vol. abs/2001.0, 2020, [Online]. Available: http://arxiv.org/abs/2001.05670.
- Li et al., “Genetic Algorithm based hyper-parameters optimization for transfer Convolutional Neural Network,” arXiv Prepr. arXiv2103.03875, Vol. abs/2103.0, 2021.
- -C. Yeh, Y.-P. Lin, Y.-C. Liang, C.-M. Lai, and X.-Z. Gao, “Simplified Swarm Optimisation for the Hyperparameters of a Convolutional Neural Network,” pp. 1–26.
- Zhou, “Heuristic Hyperparameter Optimization for Convolutional Neural Networks using Genetic Algorithm,” pp. 1–8, 2021, [Online]. Available: http://arxiv.org/abs/2112.07087.
- Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–14, 2015.
- [X. Kan et al., “A novel PSO-based optimized lightweight convolution neural network for movements recognizing from multichannel surface electromyogram,” Complexity, vol. 2020, 2020, doi: 10.1155/2020/6642463.
- Johnson, A. Valderrama, C. Valle, B. Crawford, R. Soto, and R. Nanculef, “Automating Configuration of Convolutional Neural Network Hyperparameters Using Genetic Algorithm,” IEEE Access, Vol. 8, pp. 156139–156152, 2020, doi: 10.1109/ACCESS.2020.3019245.
- M. Aszemi and P. D. D. Dominic, “Hyperparameter optimization in convolutional neural network using genetic algorithms,” Int. J. Adv. Comput. Sci. Appl., Vol. 10, No. 6, pp. 269–278, 2019, doi: 10.14569/ijacsa.2019.0100638.
- Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural networks: an overview and application in radiology,” Insights Imaging, Vol. 9, No. 4, pp. 611–629, 2018, doi: 10.1007/s13244-018-0639-9.
- Khan, H. Rahmani, S. A. A. Shah, M. Bennamoun, G. Medioni, and S. Dickinson, A Guide to Convolutional Neural Networks for Computer Vision. Morgan & Claypool, 2018.
- Raitoharju, “Chapter 3 - Convolutional neural networks,” A. Iosifidis and A. B. T.-D. L. for R. P. and C. Tefas, Eds. Academic Press, 2022, pp. 35–69.
- H. Lopez Pinaya, S. Vieira, R. Garcia-Dias, and A. Mechelli, “Chapter 10 - Convolutional neural networks,” A. Mechelli and S. B. T.-M. L. Vieira, Eds. Academic Press, 2020, pp. 173–191.
- Tian, “Artificial Intelligence Image Recognition Method Based on Convolutional Neural Network Algorithm,” IEEE Access, vol. 8, pp. 125731–125744, 2020, doi: 10.1109/ACCESS.2020.3006097.
- Kotu and B. Deshpande, “Chapter 10 - Deep Learning,” V. Kotu and B. B. T.-D. S. (Second E. Deshpande, Eds. Morgan Kaufmann, 2019, pp. 307–342.
- “Irish Social Science Data Archive,” 2012. https://www.ucd.ie/issda/data/commissionforenergyregulationcer/.
- Das, A. Abraham, and A. Konar, “Automatic clustering using an improved differential evolution algorithm,” IEEE Trans. Syst. Man, Cybern. Part ASystems Humans, Vol. 38, No. 1, pp. 218–237, 2008, doi: 10.1109/TSMCA.2007.909595.
- L. Davies and D. W. Bouldin, “A Cluster Separation Measure,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-1, No. 2, pp. 224–227, 1979, doi: 10.1109/TPAMI.1979.4766909.
|