A Computational Approach for Fractal Mobile-Immobile Transport with Caputo-Fabrizio Fractional Derivative

S. Sadeghi*
Department of Mathematics, Farsan Branch, Islamic Azad University, Farsan, Iran.

Abstract

This paper deals with a spectral collocation method for the numerical solution of linear and nonlinear fractal Mobile/Immobile transport (FM/IT) model with Caputo-Fabrizio fractional derivative (C-F-FD). In the time direction, the finite difference procedure is used to construct a semi-discrete problem and afterwards by applying a Chebyshev-spectral method, we obtain the approximate solution. The unconditional stability of the proposed method is proved which provides the theoretical basis of proposed method for solving the considered equation. Finally, some numerical experiments are included to clarify the efficiency and applicability of our proposed concepts in the sense of accuracy and convergence ratio.

Received: 18 July 2022, Revised: 01 September 2022, Accepted: 02 December 2022.

Keywords: Fractal nobile-immobile transport (FM/IT) model; Caputo-Fabrizio fractional derivative (C-F-FD); Spectral approximation; Stability analysis.
AMS Subject Classification: 26A33, 34K37.

Index to information contained in this paper

1 Introduction
2 FM/IT model with C-F-FD
3 Illustrative test problems and discussion
4 Conclusions

1. Introduction

In the last decades, the use of fractional-order derivatives has become popular due to its nonlocality property which is an intrinsic property of many complex systems. The fractional-order derivatives are widely applied in modeling of physical phenomena such as viscoelasticity, electrochemistry, electromagnetic, nanotechnology, control theory of dynamical systems, financial modeling, random walk, anomalous transport and anomalous diffusion, porous materials, and biological modeling $[14,16]$. Several researchers studied fractional calculus that we can mention the following works:

[^0]Atangana and Baleanu [4] suggested a new fractional derivative with nonlocal and nonsingular kernel for solving fractional heat in material with different scales and also those with heterogeneous media. Sharma et al. analyzed [18] nonlinear dynamics of CattaneoChristov heat flux model for third-grade power-law fluid. Tateishi and et al. [19] solved the fractional diffusion equation without external forces and according to the free diffusion boundary conditions. Atangana and Qureshi [6] proposed fractal-fractional derivatives which estimate the chaotic behavior of some attractors from applied mathematics. Yuste and Acedo [21] suggested a set of continuum fractional diffusion equations to investigate the behavior of a reaction front in the $A+B \rightarrow C$ reactionsubdiffusion process. The concept of fractional-order derivatives based on of the exponential and Mittag-Leffler laws, are described in [1, 5].

Recently, fractional partial differential equations (FPDEs) have attracted increasing attention in both theory and application. The superior capabilities of FPDEs to accurately model different phenomena have raised significant interest in assaying analytical and numerical methods for obtaining the solutions to such problems. It is usually difficult to obtain closed-form solutions for FPDEs. Therefore, the approximate solutions of these equations have been the subject of many publications. From the numerical point of view, some various approximation methods have been presented for solving FPDEs. The main aim of [11] is to propose an implicit difference approximation scheme (IDAS) for the numerical solution of fractional diffusion equation. Baeumer et al. [7] developed a practical method based on operator splitting for solving of fractional reaction-diffusion equations. Chen et al. [12] applied the Kansa method for solving the time fractional diffusion equations, in which the Multi-Quadrics and thin plate spline serve as the radial basis function. The main aim of [22] is to present an implicit numerical method to solve the nonlinear fractional reactionsubdiffusion equations.
Recently, Caputo and Fabrizio [10] have defined a new fractional derivative without a singular kernel. The new definition is called as the CaputoFabrizio fractional derivative (C-F-FD) by some researchers. The models with the new C-F-FD can describe the fluctuations of different scales and material heterogeneities, which cannot be described by classical local theories or by fractional models with a singular kernel. So far, some researchers have started analytical and numerical studies on the basis of the new C-F-FD; see [2, 3, 8, 13]. However, the studies on the numerical methods for FPDEs with the C-F-FD have been rarely reported.

In this paper, we deal with the linear and nonlinear fractal Mobile/Immobile transport (FM/IT) model with C-F-FD [15]:

Linear FM/IT model with C-F-FD:

$$
\begin{equation*}
\lambda_{1} \frac{\partial \mathcal{U}(x, t)}{\partial t}+\lambda_{2}{ }_{0}^{C F} \partial_{t}^{\alpha} \mathcal{U}(x, t)=\gamma_{1} \partial_{x}^{2} \mathcal{U}(x, t)-\gamma_{2} \mathcal{U}(x, t)+f(x, t), \tag{1}
\end{equation*}
$$

Nonlinear FM/IT model with C-F-FD:

$$
\begin{equation*}
\lambda_{1} \frac{\partial \mathcal{U}(x, t)}{\partial t}+\lambda_{2}{ }_{0}^{C F} \partial_{t}^{\alpha} \mathcal{U}(x, t)=\gamma \partial_{x}^{2} \mathcal{U}(x, t)+\mathcal{Q}(\mathcal{U})+f(x, t), \tag{2}
\end{equation*}
$$

where $(x, t) \in \Omega \times(0, T], \Omega=(-1,1), \mathcal{U}=\mathcal{U}(x, t)$ is a sufficiently differentiable function in $\bar{\Omega} \times[0, T]$ and the time-fractional derivative ${ }_{0}^{C F} \partial_{t}^{\alpha} \mathcal{U}(x, t)$ is the C-F-FD
defined by

$$
{ }_{0}^{C F} \partial_{t}^{\alpha} \mathcal{U}(x, t):=\int_{0}^{t} \frac{\partial \mathcal{U}(x, s)}{\partial s} \vartheta_{\alpha}(t-s) d s, 0<\alpha<1
$$

in which $\vartheta_{\alpha}(t):=\frac{\exp \left(-\frac{\alpha}{1-\alpha}(t)\right)}{1-\alpha}$.
The term $\mathcal{Q}(\mathcal{U})$ in (2) satisfies the following conditions:

- There exists a positive constant c such that $|\mathcal{Q}(\mathcal{U})| \leqslant c|\mathcal{U}|$,
- There exists a positive constant c such that $\left|\mathcal{Q}^{\prime}(\mathcal{U})\right| \leqslant c$.

For Eqs. (1) and (2), the initial condition:

$$
\begin{equation*}
\left.\mathcal{U}(x, t)\right|_{t=0}=h(x), x \in \bar{\Omega} \tag{3}
\end{equation*}
$$

and the Dirichlet boundary conditions:

$$
\begin{equation*}
\left.\mathcal{U}(x, t)\right|_{x \in \partial \Omega}=0, t>0 \tag{4}
\end{equation*}
$$

are considered.
In this paper, we present a spectral method to compute the approximate solution for linear and nonlinear FM/IT models with C-F-FD. The rest of this paper is organized as follows. In Section 2, we present a computational approach to construct numerical solution for fractal Mobile/Immobile transport model with C-F-FD. We prove the convergence and the stability of the method in this section. Some test problems are presented and the results are shown in Section 3 and we discuss the numerical performance of our method. Finally, in Section 4 some concluding remarks are presented.

2. FM/IT model with C-F-FD

2.1 Linear FM/IT model with C-F-FD

2.1.1 Discretization of $C-F-F D$ and semi-discrete scheme

In this subsection, we deal with the linear FM/IT model with C-F-FD. For discretization of time variable, let $t_{k}:=k \delta t, k=0,1, \ldots, N$ be an equidistant partition of $[0, T]$, where $\delta t=\frac{T}{N}$. We analogize the C-F-FD term by using the finite difference scheme:

$$
\begin{align*}
& { }_{0}^{C F} \partial_{t}^{\alpha} \mathcal{U}^{k+1}(x) \\
& \quad=\left\{\begin{array}{ll}
\bar{c}_{\alpha, \delta t}\left[\mathcal{D}_{\alpha, k+1}^{k+1}\left(\mathcal{U}^{k+1}(x)-\mathcal{U}^{k}(x)\right)+\sum_{j=1}^{k} \mathcal{D}_{\alpha, j}^{k+1}\left(\mathcal{U}^{j}(x)-\mathcal{U}^{j-1}(x)\right)\right], & k \geqslant 1 \\
\bar{c}_{\alpha, \delta t} \mathcal{D}_{\alpha, 1}^{1}\left(\mathcal{U}^{1}(x)-\mathcal{U}^{0}(x)\right), & k=0,
\end{array}+r_{\mathcal{U}}^{k+1}(x),\right. \tag{5}
\end{align*}
$$

where

$$
\bar{c}_{\alpha, \delta t}=(\alpha \delta t)^{-1}
$$

and

$$
\mathcal{D}_{\alpha, j}^{k+1}=\exp \left(-\frac{\alpha \delta t}{1-\alpha}(k+1-j)\right)-\exp \left(-\frac{\alpha \delta t}{1-\alpha}(k-j+2)\right),(j=1,2, \cdots, k+1)
$$

Theorem 2.1 ([15]) For any $0<\alpha<1$, the coefficients of $\mathcal{D}_{\alpha, j}^{k+1}, j=1,2, \cdots, k+$ 1 satisfy the following properties

- $\mathcal{D}_{\alpha, j}^{k+1}>0, \forall j \leqslant k+1$;
- $\mathcal{D}_{\alpha, j}^{k+1} \leqslant \mathcal{D}_{\alpha, j+1}^{k+1}, \forall j \leqslant k$;
- $\mathcal{D}_{\alpha, k+1}^{k+1}=\mathcal{D}_{\alpha, 1}^{1}, \mathcal{D}_{\alpha, k}^{k+1}=\mathcal{D}_{\alpha, 1}^{2}$;
- $\sum_{j=1}^{k-1}\left(\mathcal{D}_{\alpha, j+1}^{k+1}-\mathcal{D}_{\alpha, j}^{k+1}\right)+\mathcal{D}_{\alpha, 1}^{k+1}=\mathcal{D}_{\alpha, k}^{k+1}=\mathcal{D}_{\alpha, 1}^{2}$.

Theorem 2.2 ([15]) For any $0<\alpha<1$, it holds

$$
\begin{gathered}
r_{1, \mathcal{U}}^{k+1}(x)=-\left.\frac{1}{1-\alpha} \sum_{j=1}^{k+1} \int_{t_{j-1}}^{t_{j}}\left(s-t_{j-\frac{1}{2}}\right) \frac{\partial^{2} \mathcal{U}(x, s)}{\partial s^{2}}\right|_{s=\varsigma_{j}} \exp \left(-\frac{\alpha}{1-\alpha}\left(t_{k+1}-s\right)\right) d s \\
\left|r_{1, \mathcal{U}}^{k+1}(x)\right| \leqslant \frac{c}{\alpha} \exp \left(\frac{2 \alpha}{1-\alpha}\right) \max _{t \in(0, T]}\left|\partial_{t}^{2} \mathcal{U}(x, t)\right| \delta t^{2}, \quad-1 \leqslant k \leqslant N-1, \forall x \in \Omega
\end{gathered}
$$

where $\varsigma_{j} \in\left(t_{j-1}, t_{j}\right)$ and c are independent of δt.
Also, the first order temporal derivative can be approximated as follows

$$
\begin{equation*}
\frac{\partial \mathcal{U}^{k+1}(x)}{\partial t}=\frac{\mathcal{U}^{k+1}(x)-\mathcal{U}^{k}(x)}{\delta t}+r_{2, \mathcal{U}}^{k+1}(x) \tag{6}
\end{equation*}
$$

where the truncation error $r_{2, \mathcal{U}}^{k+1}(x)$ satisfies $\left|r_{2, \mathcal{U}}^{k+1}(x)\right| \leqslant c \max _{t \in(0, T]}\left|\partial_{t}^{2} \mathcal{U}(x, t)\right| \delta t$, in which c is independent δt.
Substituting (5) and (6) into (1), we get

$$
\mathcal{B}_{1, \alpha, \delta t} \mathcal{U}^{k+1}(x)-\bar{c}_{\alpha, \delta t}^{-1} \gamma_{1} \partial_{x}^{2} \mathcal{U}^{k+1}(x)=\mathcal{P}_{t}^{\alpha} \mathcal{U}^{k}(x)+F^{k+1}(x)+\mathcal{R}_{\mathcal{U}}^{k+1}(x), x \in \bar{\Omega}
$$

where

$$
\begin{gathered}
\mathcal{P}_{t}^{\alpha} \mathcal{U}^{k}(x) \\
= \begin{cases}\left(\lambda_{1} \alpha+\lambda_{2} \mathcal{D}_{\alpha, 1}^{1}\right) \mathcal{U}^{0}(x), & k=0, \\
\mathcal{B}_{2, \alpha, \delta t} \mathcal{U}^{k}(x)+\lambda_{2} \sum_{j=1}^{k-1}\left(\mathcal{D}_{\alpha, j+1}^{k+1}-\mathcal{D}_{\alpha, j}^{k+1}\right) \mathcal{U}^{j}(x)+\lambda_{2} \mathcal{D}_{\alpha, 1}^{k+1} \mathcal{U}^{0}(x), & k \geqslant 1,\end{cases} \\
F^{k+1}=\bar{c}_{\alpha, \delta t}^{-1} f\left(x, t_{k+1}\right), k=0,1, \cdots, N-2, \mathcal{U}^{0}(x)=h(x),
\end{gathered}
$$

and

$$
\mathcal{B}_{1, \alpha, \delta t}=\lambda_{1} \alpha+\lambda_{2} \mathcal{D}_{\alpha, 1}^{1}+\gamma_{2} \bar{c}_{\alpha, \delta t}^{-1}, \mathcal{B}_{2, \alpha, \delta t}=\lambda_{1} \alpha+\lambda_{2}\left(\mathcal{D}_{\alpha, 1}^{1}-\mathcal{D}_{\alpha, 1}^{2}\right)
$$

Furthermore, the truncation error $\mathcal{R}_{\mathcal{U}}^{k+1}(x)$ satisfy

$$
\left|\mathcal{R}_{\mathcal{U}}^{k+1}(x)\right| \leqslant \frac{c}{\alpha} \exp \left(\frac{2 \alpha}{1-\alpha}\right) \max _{t \in(0, T]}\left|\partial_{t}^{2} \mathcal{U}(x, t)\right| \delta t^{2},-1 \leqslant k \leqslant N-1, \forall x \in \Omega
$$

Replacing $\mathcal{U}^{k+1}(x)$ by the approximate solution $u^{k+1}(x)$, we can obtain the following semi-discrete problem for (1) and (3)-(4), which is given by:

Scheme I: Given $u^{0}=h(x)$ and find $u^{k+1}(k=0,1,2, \cdots, N-1)$, such that:

$$
\left\{\begin{array}{l}
\mathcal{B}_{1, \alpha, \delta t} u^{k+1}(x)-\bar{c}_{\alpha, \delta \delta}^{-1} \gamma_{1} \partial_{x}^{2} u^{k+1}(x)=\mathcal{P}_{t}^{\alpha} u^{k}(x)+F^{k+1}(x), x \in \bar{\Omega} \tag{7}\\
\left.u^{k+1}\right|_{x \in \partial \Omega}=0,-1 \leqslant k \leqslant N-1
\end{array}\right.
$$

2.1.2 Spectral approximation to semi-discrete problem (7)

Consider the Hilbert space of μ-measurable $L^{2}((-1,1), d \mu(x))$, where

$$
d \mu(x)=w(x) d x=\left(1-x^{2}\right)^{-\frac{1}{2}} d x
$$

Furthermore, the Hilbert space $L^{2}((-1,1), d \mu(x))$ is equipped with inner product

$$
\langle u, v\rangle_{0, \omega}=\int_{-1}^{1} u(x) v(x)\left(1-x^{2}\right)^{-\frac{1}{2}} d(x)
$$

Theorem 2.3 ([17]) Let \mathbb{P}_{M} denote the set of polynomials of degree $\leqslant M$. If \boldsymbol{B}_{M} be a sequence of orthogonal polynomials on $(-1,1)$ of degree $\leqslant M$, i.e.,

$$
\boldsymbol{B}_{M}=\left\{u \in \mathbb{P}_{M} \mid\langle u, v\rangle_{0, \omega}=0, \forall v \in \mathbb{P}_{M-1}\right\}
$$

then there exists a reproducing kernel $K_{M}:(-1,1) \times(-1,1) \rightarrow \mathbb{R}$ such that

$$
u(x)=\left\langle u, K_{M}(x, .)\right\rangle_{0, \omega}, \forall u \in \mathbb{P}_{M}, \forall x \in(-1,1)
$$

and

$$
0=\left\langle(x+1) u, K_{M}(-1, .)\right\rangle_{0, \omega}=\left\langle(1-x) u, K_{M}(1, .)\right\rangle_{0, \omega}, \forall u \in \mathbb{P}_{M-1}
$$

Let $\left\{T_{M}\right\}_{M \geqslant 0}$ be the Chebyshev polynomials in $L^{2}((-1,1), d \mu(x))$ with $\operatorname{degree}\left(P_{M}\right)=M$, we consider

$$
q_{M}(x)=\frac{T_{M+2}(x)+c_{M} T_{M+1}(x)+d_{M} T_{M}(x)}{(1-x)(x+1)} \in \mathbb{P}_{M},
$$

where

$$
\begin{aligned}
c_{M} & =-\frac{\left[T_{M+2}(1) T_{M}(-1)+T_{M+2}(-1) T_{M}(1)\right]}{\left[T_{M}(-1) T_{M+1}(1)-T_{M}(1) T_{M+1}(-1)\right]} \\
d_{M} & =-\frac{\left[T_{M+2}\left(T_{M+1}(-1)+T_{M+2}(-1) T_{M+1}(1)\right]\right.}{\left[T_{M}(1) T_{M+1}(-1)-T_{M}(-1) T_{M+1}(1)\right]}
\end{aligned}
$$

Hence, $\left\{q_{M}\right\}_{M \geqslant 0}$ is a sequence of orthogonal polynomials in $L^{2}((-1,1), d \widetilde{\mu}(x))$ equipped with inner product

$$
\langle u, v\rangle_{2, \widetilde{\omega}}=\int_{-1}^{1} u(x) v(x) d \widetilde{\mu}(x), d \widetilde{\mu}(x)=\widetilde{\omega}(x) d x=(1-x)(x+1)\left(1-x^{2}\right)^{-\frac{1}{2}} d x
$$

It is shown in [17] that

$$
\begin{aligned}
K_{M-2}(x, y) & =\sum_{m=0}^{M-2} \frac{q_{m}(x) q_{m}(y)}{\left\|q_{m}\right\|_{2, \widetilde{\omega}}^{2}} \\
& =\frac{k_{M}\left(q_{M-1}(x) q_{M-2}(y)-q_{M-2}(x) q_{M-1}(y)\right)}{k_{M+1}\left\|q_{M-2}\right\|_{0, \widetilde{\omega}}^{2}(x-y)}, x \neq y
\end{aligned}
$$

where $K_{M-2}(., y) \in \mathbb{P}_{M-2}$ and $-k_{M+1}<0$ is the leading coefficient of x^{M+1} in $(x+1)(1-x) q_{M-1}(x)$.

We also have

$$
K_{M-2}(x, x)=\sum_{m=0}^{M-2} \frac{q_{m}^{2}(x)}{\left\|q_{m}\right\|_{0, \widetilde{\omega}}^{2}}=\frac{k_{M}\left(q_{M-1}^{\prime}(x) q_{M-2}(x)-q_{M-2}^{\prime}(x) q_{M-1}(x)\right)}{k_{M+1}\left\|q_{M-2}\right\|_{0, \widetilde{\omega}}^{2}}
$$

Suppose that $\left\{z_{j}\right\}_{j=1}^{M-1}$ denote the $M-1$ simple zero points of q_{M-1} on $(-1,1)$, then we have

$$
K_{M-2}\left(z_{i}, z_{j}\right)=\sum_{m=0}^{M-2} \frac{q_{m}\left(z_{i}\right) q_{m}\left(z_{j}\right)}{\left\|q_{m}\right\|_{0, \widetilde{\omega}}^{2}}= \begin{cases}0, & i \neq j \\ \widetilde{\omega}_{i}^{-1}=\frac{k_{M} q_{M-1}^{\prime}\left(z_{i}\right) q_{M-2}\left(z_{i}\right)}{k_{M+1}\left\|q_{M-2}\right\|_{0, \tilde{\omega}}}, & i=j\end{cases}
$$

Let $\left\{z_{j}\right\}_{j=0}^{M}$ denote the $M+1$ simple zero points of $(x+1)(1-x) q_{M-1}$ on $[-1,1]$, it is well known [17] that there exists a unique set of quadrature weights $\left\{\omega_{j}\right\}_{j=0}^{M}$ such that we have

$$
\int_{-1}^{1} u(x) \frac{1}{\sqrt{1-x^{2}}} d x=\sum_{j=0}^{M} \omega_{j} u\left(z_{j}\right), \forall u \in \mathbb{P}_{2 M-1}, z_{j}=-\cos \frac{\pi j}{M}, j=0, \cdots, M
$$

where

$$
\omega_{j}=\frac{\pi}{\sigma_{j} M}, j=0,1, \cdots, M
$$

in which

$$
\sigma_{j}=\left\{\begin{array}{l}
2, j=0, M \\
1,1 \leqslant j \leqslant M-1
\end{array}\right.
$$

An approximant u_{M}^{k} to u^{k} can be obtained by calculating a truncated series based on

$$
\begin{gathered}
\mathbb{P}_{M}=\operatorname{span}\left\{\phi_{j}(x), j=0,1, \cdots, M\right\} \\
\phi_{j}(x)=\frac{(x+1)(1-x) q_{M-1}(x)}{\left.\left((x+1)(1-x) q_{M-1}(x)\right)^{\prime}\right|_{x=z_{j}}\left(x-z_{j}\right)}
\end{gathered}
$$

as

$$
u^{k}(x) \approx u_{M}^{k}(x):=\Phi(x)\{\mathbf{v}\}^{k}
$$

where

$$
\Phi(x)=\left(\phi_{0}(x), \phi_{1}(x), \cdots, \phi_{M}(x)\right),
$$

and

$$
\{\mathbf{v}\}^{k}=\left(v_{0}^{k}, v_{1}^{k}, \cdots, v_{M}^{k}\right)^{T}
$$

Also $\frac{d^{m}}{d x^{m}} \Phi(x)$ can be expressed in the following matrix form

$$
\frac{d^{m}}{d x^{m}} \Phi(x)=\Phi(x) \mathbf{D}^{m}, m \geqslant 1
$$

where

$$
\mathbf{D}=\left[\mathbf{D}_{i j}\right]=\left[\phi_{j}^{\prime}\left(z_{i}\right)\right], i, j=0,1, \cdots, M, \mathbf{D}^{m}=\underbrace{\mathbf{D D} \cdots \mathbf{D}}_{m} .
$$

The entries of the first-order differentiation matrix \mathbf{D} can be determined by

$$
\begin{aligned}
\mathbf{D}_{i j} & = \begin{cases}\frac{\left.\left((x-a)(b-x) q_{M-1}(x)\right)^{\prime}\right|_{x=z_{i}}}{\left((x-a)(b-x) q_{M-1}(x)\right)^{\prime} \mid x=z_{j}}\left(z_{i}-z_{j}\right) & i \neq j, \\
\frac{\left.\left((x-a)(b-x) q_{M-1}(x)\right)^{\prime}\right|_{x=z_{i}}}{\left.2\left((x-a)(b-x) q_{M-1}(x)\right)^{\prime \prime}\right|_{x=z_{i}}}, & i=j\end{cases} \\
& = \begin{cases}-\frac{2 M^{2}+1}{6}, & i=j=0, \\
\frac{\sigma_{i}}{\sigma_{j}} \frac{(-1)^{i+j}}{z_{i}-z_{j}}, & i \neq j, 0 \leqslant i, j \leqslant M, \\
-\frac{z_{i}}{2\left(1-z_{k}^{2}\right)}, & i=j, 1 \leqslant i, j \leqslant M-1, \\
\frac{2 M^{2}+1}{6}, & i=j=M .\end{cases}
\end{aligned}
$$

Then, we approximate $\partial_{x}^{m} u_{M}^{k}$ by

$$
\partial_{x}^{m} u_{M}^{k}(x):=\Phi(x) \mathbf{D}^{m}\{\mathbf{v}\}^{k}, m \geqslant 1
$$

Thus, we have:

$$
\frac{d^{m}}{d x^{m}} u_{M}^{k}\left(z_{i}\right)=\sum_{j=0}^{M}\left(\mathbf{D}^{m}\right)_{i j} v_{j}^{k}, m \geqslant 1,1 \leqslant i \leqslant M-1
$$

We define the corresponding discrete inner product as

$$
\langle u, v\rangle_{M}=\sum_{j=0}^{M} \omega_{j} u\left(z_{j}\right) v\left(z_{j}\right)
$$

which induces the norm $\|u\|_{M}=\left(\langle u, u\rangle_{M, \omega}\right)^{\frac{1}{2}}$ and satisfies

$$
\langle u, v\rangle_{M}=\langle u, v\rangle_{0, \omega}, \forall u, v: u . v \in \mathbb{P}_{2 M-1} .
$$

Consider the weight Sobolov space $H^{r}((-1,1), d \mu(x))$ as

$$
H^{r}((-1,1), d \mu(x))=\left\{u \in L^{2}((-1,1), d \mu(x)):\|u\|_{r, \omega}=\left(\sum_{j=0}^{r}\left\|\partial_{x} u\right\|_{0, \omega}^{2}\right)^{\frac{1}{2}}<\infty\right\}
$$

moreover, we set $H_{0}^{1}((-1,1), d \mu(x))=\left\{u \in L^{2}((-1,1), d \mu(x)): \partial_{x} u \in\right.$ $\left.L^{2}((-1,1), d \mu(x)), u(-1)=u(1)=0\right\}$, we also introduce the the bilinear form over $H_{0}^{1}((-1,1), d \mu(x))$ as

$$
a_{\omega}\langle u, v\rangle=\left\langle\partial_{x} u, \omega^{-1} \partial_{x}(v \omega)\right\rangle_{0, \omega}=\int_{-1}^{1} \partial_{x} u \partial_{x}(v \omega) d x, \forall u, v \in H_{0}^{1}((-1,1), d \mu(x))
$$

Now, we will give the representation of numerical solution to semi-discrete problem (7) in the space \mathbb{P}_{M}.

Given $u_{M}^{0}=I_{M}^{c} u^{0}$ and find $u_{M}^{k+1} \in \mathbb{P}_{M}(k=0,1,2, \cdots, N-1)$, such that:

$$
\left\{\begin{array}{l}
\mathcal{B}_{1, \alpha, \delta t} u_{M}^{k+1}\left(z_{i}\right)-\bar{c}_{\alpha, \delta t}^{-1} \gamma_{1} \partial_{x}^{2} u_{M}^{k+1}\left(z_{i}\right)=\mathcal{P}_{t}^{\alpha} u_{M}^{k}\left(z_{i}\right)+F^{k+1}\left(z_{i}\right), 1 \leqslant i \leqslant M-1 \tag{8}\\
u_{M}^{k+1}\left(z_{i}\right)=0, i=0, M,-1 \leqslant k \leqslant N-1
\end{array}\right.
$$

where

$$
\begin{aligned}
& \mathcal{P}_{t}^{\alpha} u_{M}^{k}\left(z_{i}\right) \\
& = \begin{cases}\left(\lambda_{1} \alpha+\lambda_{2} \mathcal{D}_{\alpha, 1}^{1}\right) u_{M}^{0}\left(z_{i}\right), & k=0 \\
\mathcal{B}_{2, \alpha, \delta t} u_{M}^{k}\left(z_{i}\right)+\lambda_{2} \sum_{j=1}^{k-1}\left(\mathcal{D}_{\alpha, j+1}^{k+1}-\mathcal{D}_{\alpha, j}^{k+1}\right) u_{M}^{j}\left(z_{i}\right)+\lambda_{2} \mathcal{D}_{\alpha, 1}^{k+1} u^{0}\left(z_{i}\right), & k \geqslant 1,\end{cases}
\end{aligned}
$$

and $I_{M}^{c}: C[a, b] \rightarrow \mathbb{P}_{M}$ is the interpolation operator associated with $\left\{z_{i}, \omega_{i}\right\}_{j=0}^{M}$ such that

$$
\left(I_{M}^{c} u\right)\left(z_{i}\right)=u\left(z_{i}\right), \quad i=0,1,2, \cdots, M
$$

Let us denote $\mathbb{X}_{M}=\left\{v_{M} \mid v_{M} \in \mathbb{P}_{M}, v_{M}\left(z_{0}\right)=v_{M}\left(z_{M}\right)=0\right.$. $\}$, we can reformulate the scheme (8) as the following:
$\mathbf{S}-\mathbf{A}(\mathbf{I}):$ Find the spectral approximation $u_{M}^{k+1} \in \mathbb{X}_{M}(k=0,1,2, \cdots, N-1)$, such that for all $v_{M} \in \mathbb{X}_{M}$:

$$
\mathcal{B}_{1, \alpha, \delta t}\left\langle u_{M}^{k+1}, v_{M}\right\rangle_{M}+\bar{c}_{\alpha, \delta t}^{-1} \gamma_{1} a_{\omega}\left\langle u_{M}^{k+1}, v_{M}\right\rangle=\left\langle\mathcal{P}_{t}^{\alpha} u_{M}^{k}, v_{M}\right\rangle_{M}+\left\langle I_{M}^{c} F^{k+1}, v_{M}\right\rangle_{M .} .(9)
$$

The approximate solution u_{M}^{k} can be obtained by calculating a truncated series based on $\mathbb{P}_{M}=\operatorname{span}\left\{\phi_{j}(x), j=0,1, \cdots, M\right\}$ as the following

$$
u^{k}(x) \approx u_{M}^{k}(x):=\Phi(x)\{\mathbf{v}\}^{k}
$$

Therefore, we get

$$
\left\{\begin{array}{l}
\sum_{j=0}^{M}\left[\mathcal{B}_{1, \alpha, \delta t} \delta_{i j}-\bar{c}_{\alpha, \delta t}^{-1} \gamma_{1}\left(\mathbf{D}^{2}\right)_{i j}\right] v_{j}^{k+1}=\digamma^{k+1}\left(z_{i}\right), 1 \leqslant i \leqslant M-1 \tag{10}\\
\Phi\left(z_{0}\right)\{\mathbf{v}\}^{k+1}=\Phi\left(z_{M}\right)\{\mathbf{v}\}^{k+1}=0
\end{array}\right.
$$

where

$$
\digamma^{k+1}\left(z_{i}\right)=\mathcal{P}_{t}^{\alpha} u_{M}^{k}\left(z_{i}\right)+F^{k+1}\left(z_{i}\right), 1 \leqslant i \leqslant M-1
$$

Let us denote

$$
\begin{aligned}
& (\mathbf{B})_{i j}=\mathcal{B}_{1, \alpha, \delta t} \delta_{i j}-\bar{c}_{\alpha, \delta t}^{-1} \gamma_{1}\left(\mathbf{D}^{2}\right)_{i j}, 1 \leqslant i \leqslant M-1,0 \leqslant j \leqslant M \\
& (\mathbf{B})_{0 j}=\delta_{0 j},(\mathbf{B})_{M j}=\delta_{M j}, 0 \leqslant j \leqslant M \\
& \{\mathbf{c}\}^{k+1}=\left(0, \digamma^{k+1}\left(z_{1}\right), \digamma^{k+1}\left(z_{2}\right), \cdots, \digamma^{k+1}\left(z_{M-1}\right), 0\right)^{T} \\
& \{\mathbf{v}\}^{k+1}=\left(v_{0}^{k+1}, v_{1}^{k+1}, \cdots, v_{M}^{k+1}\right)^{T}
\end{aligned}
$$

then, the linear system (10) reduces to

$$
\mathbf{B}\{\mathbf{v}\}^{k+1}=\{\mathbf{c}\}^{k+1}, k=0,1, \cdots, N-1
$$

Lemma 2.4 ([9])For any $u \in \mathbb{P}_{M}$, we have

$$
\|u\|_{0, \omega} \leqslant\|u\|_{M} \leqslant \sqrt{2}\|u\|_{0, \omega} .
$$

Lemma 2.5 ([9]) If $u \in H_{0}^{1}((-1,1), d \mu(x))$, then there holds

$$
\|u\|_{0, \omega} \leqslant c\left\|\partial_{x} u\right\|_{0, \omega},
$$

where c is positive constant independent of u.
Lemma 2.6 ([9]) For any $u \in H_{0}^{1}((-1,1), d \mu(x))$, we have

$$
\begin{aligned}
& \left|a_{\omega}\langle u, u\rangle\right| \leqslant c\left\|\partial_{x} u\right\|_{0, \omega}^{2}, \\
& a_{\omega}\langle u, u\rangle \geqslant \frac{1}{4}\left\|\partial_{x} u\right\|_{0, \omega}^{2},
\end{aligned}
$$

where c is positive constant independent of u.
Lemma 2.7 ([20]) (Discrete Gronwall inequality) Let $\left\{f_{i}\right\}_{i=1}^{\infty}$ and $\left\{g_{i}\right\}_{i=1}^{\infty}$ are nonnegative sequences and c is a nonnegative constant. If

$$
f_{i} \leqslant c+\sum_{j=0}^{i-1} g_{j} f_{j}, \quad i \geqslant 0
$$

then

$$
f_{i} \leqslant c \prod_{0 \leqslant j \leqslant i-1}\left(1+g_{j}\right) \leqslant c e^{\sum_{j=0}^{i-1} g_{j}}, i \geqslant 0
$$

Theorem 2.8 Let $u_{M}^{k+1} \in \mathbb{X}_{M}, k=0,1, \cdots, M-1$ be the solution of scheme (9). Then the scheme (9) is unconditionally stable in the sense that for all $\delta t>0$.

Proof We know $\left\|u_{M}^{k+1}\right\|_{0, \omega} \leqslant c\left\|\partial_{x} u_{M}^{k+1}\right\|_{0, \omega}$. Set

$$
\begin{aligned}
C_{1, \alpha, \delta t} & =\min \left\{\gamma_{2} \bar{c}_{\alpha, \delta t}^{-1}, \frac{\bar{c}_{\alpha, \delta t}^{-1} \gamma_{1}}{4}\right\} \\
C_{2, \alpha, \delta t} & =\max \left\{\lambda_{2}, \frac{\lambda_{1} \alpha \sqrt{2} c}{\left(\mathcal{D}_{\alpha, 1}^{1}-\mathcal{D}_{\alpha, 1}^{2}\right)}\right\},
\end{aligned}
$$

therefore, we can get the following inequality

$$
\begin{array}{r}
\left\|u_{M}^{k+1}\right\|_{M}^{2}+\left\|\partial_{x} u_{M}^{k+1}\right\|_{0, \omega}^{2} \leqslant \sum_{j=1}^{k} \frac{C_{2, \alpha, \delta t}}{C_{1, \alpha, \delta t}}\left(\mathcal{D}_{\alpha, j+1}^{k+1}-\mathcal{D}_{\alpha, j}^{k+1}\right)\left(\left\|u_{M}^{j}\right\|_{M}^{2}+\left\|\partial_{x} u_{M}^{j}\right\|_{0, \omega}^{2}\right) \\
+\lambda_{2} C_{1, \alpha, \delta t}^{-1} \mathcal{D}_{\alpha, 1}^{k+1}\left\|\left.u_{M}^{0}\right|_{M} ^{2}+\frac{1}{3 C_{1, \alpha, \delta t}\left(\lambda_{1} \alpha+\lambda_{2} \mathcal{D}_{\alpha, 1}^{1}\right)}\right\| I_{M}^{c} F^{k+1} \|_{M}^{2}
\end{array}
$$

Noting Lemma 2.7, we have

$$
\begin{equation*}
\left\|u_{M}^{k+1}\right\|_{M}^{2}+\left\|\partial_{x} u_{M}^{k+1}\right\|_{0, \omega}^{2} \leqslant\left(\left\|u_{M}^{0}\right\|_{M}^{2}+\left\|I_{M}^{c} F^{k+1}\right\|_{M}^{2}\right) e^{\frac{C_{2, \alpha, \delta t}}{C_{1, \alpha, \delta t}}\left(\mathcal{D}_{\alpha, 1}^{1}-\mathcal{D}_{\alpha, 1}^{k+1}\right)} \tag{11}
\end{equation*}
$$

where $\mathbf{C}_{1, \alpha, \delta t}=\max \left\{\lambda_{2} C_{1, \alpha, \delta t}^{-1} \mathcal{D}_{\alpha, 1}^{k+1}, \frac{1}{3 C_{1, \alpha, \delta t}\left(\lambda_{1} \alpha+\lambda_{2} \mathcal{D}_{\alpha, 1}^{1}\right)}\right\}$ and $\mathbf{C}_{2, \alpha, \delta t}=\frac{C_{2, \alpha, \delta t}}{C_{1, \alpha, \delta t}}$.
Using (11), the following inequality is holds

$$
\begin{aligned}
\left\|u_{M}^{k+1}-\widetilde{u}_{M}^{k+1}\right\|_{M}^{2} & \leqslant\left\|u_{M}^{k+1}-\widetilde{u}_{M}^{k+1}\right\|_{M}^{2}+\left\|\partial_{x} u_{M}^{k+1}-\partial_{x} \widetilde{u}_{M}^{k+1}\right\|_{M}^{2} \\
& \leqslant \mathbf{C}_{1, \alpha, \delta t}\left\|u_{M}^{0}-\widetilde{u}_{M}^{0}\right\|_{M}^{2} e^{\mathbf{C}_{2, \alpha, \delta t}\left(\mathcal{D}_{\alpha, 1}^{1}-\mathcal{D}_{\alpha, 1}^{k+1}\right)}
\end{aligned}
$$

This completes the proof of Theorem 2.8.

2.2 Nonlinear FM/IT model with $C-F-F D$

2.2.1 Semi-discrete scheme and spectral approximation

In this subsection, we consider the nonlinear FM/IT model with C-F-FD.
Using Taylor series expansion, we have

$$
\left\{\begin{array}{l}
\mathcal{Q}\left(\mathcal{U}^{1}\right)=\mathcal{Q}\left(\mathcal{U}^{0}\right)+\mathcal{Q} \mathcal{U}\left(\mathcal{U}_{\vartheta}\right) \partial_{t} \mathcal{U}\left(x, t_{\tau}\right) \delta t, \quad k=0 \\
\mathcal{Q}\left(\mathcal{U}^{k+1}\right)=2 \mathcal{Q}\left(\mathcal{U}^{k}\right)-\mathcal{Q}\left(\mathcal{U}^{k-1}\right)+O\left(\delta t^{2}\right), k \geqslant 1 .
\end{array}\right.
$$

Therefore, we can get:

$$
\begin{aligned}
& \mathcal{S}_{1, \alpha, \delta t} \mathcal{U}^{k+1}(x)-\bar{c}_{\alpha, \delta t}^{-1} \gamma \partial_{x}^{2} \mathcal{U}^{k+1}(x) \\
& \quad=\mathcal{P}_{t}^{\alpha} \mathcal{U}^{k}(x)+\left\{\begin{array}{ll}
\mathcal{Q}\left(\mathcal{U}^{0}\right)+F^{1}(x), & k=0, \\
2 \mathcal{Q}\left(\mathcal{U}^{k}\right)-\mathcal{Q}\left(\mathcal{U}^{k-1}\right)+F^{k+1}(x), & k \geqslant 1,
\end{array}+\mathcal{R}_{\mathcal{U}}^{k+1}(x),\right.
\end{aligned}
$$

where

$$
\begin{gathered}
\mathcal{P}_{t}^{\alpha} \mathcal{U}^{k}(x) \\
=\left\{\begin{array}{lr}
\left(\mathcal{S}_{2, \alpha, \delta t}+\lambda_{2} \mathcal{D}_{\alpha, 1}^{2}\right) \mathcal{U}^{0}(x), & k=0, \\
\mathcal{S}_{2, \alpha, \delta t} \mathcal{U}^{k}(x)+\lambda_{2} \sum_{j=1}^{k-1}\left(\mathcal{D}_{\alpha, j+1}^{k+1}-\mathcal{D}_{\alpha, j}^{k+1}\right) \mathcal{U}^{j}(x)+\lambda_{2} \mathcal{D}_{\alpha, 1}^{k+1} \mathcal{U}^{0}(x), & k \geqslant 1,
\end{array}\right. \\
F^{k+1}=\bar{c}_{\alpha, \delta t}^{-1} f\left(x, t_{k+1}\right), k=0,1, \cdots, N-2, \mathcal{U}^{0}(x)=h(x),
\end{gathered}
$$

and

$$
\mathcal{S}_{1, \alpha, \delta t}=\lambda_{1} \alpha+\lambda_{2} \mathcal{D}_{\alpha, 1}^{1}, \mathcal{S}_{2, \alpha, \delta t}=\lambda_{1} \alpha+\lambda_{2}\left(\mathcal{D}_{\alpha, 1}^{1}-\mathcal{D}_{\alpha, 1}^{2}\right)
$$

Furthermore, it holds

$$
\left|\mathcal{R}_{\mathcal{U}}^{k+1}(x)\right| \leqslant \frac{c}{\alpha} \exp \left(\frac{2 \alpha}{1-\alpha}\right) \max _{t \in(0, T]}\left|\partial_{t}^{2} \mathcal{U}(x, t)\right| \delta t^{2}, \quad-1 \leqslant k \leqslant N-1, \forall x \in \Omega .
$$

Replacing $\mathcal{U}^{k+1}(x)$ by the approximate solution $u^{k+1}(x)$, we can obtain the following semi-discrete problem for (2) and (3)-(4), which is given by:
Scheme II: Given $u^{0}=h(x)$ and find $u^{k+1}(k=0,1,2, \cdots, N-1)$, such that

$$
\begin{align*}
& \mathcal{S}_{1, \alpha, \delta t} u^{k+1}(x)-\bar{c}_{\alpha, \delta t}^{-1} \gamma \partial_{x}^{2} u^{k+1}(x) \\
&=\mathcal{P}_{t}^{\alpha} u^{k}(x)+ \begin{cases}\mathcal{Q}\left(u^{0}\right)+F^{1}(x), & k=0, \\
2 \mathcal{Q}\left(u^{k}\right)-\mathcal{Q}\left(u^{k-1}\right)+F^{k+1}(x), & k \geqslant 1,\end{cases} \tag{12}\\
&\left.u^{k+1}\right|_{x \in \partial \Omega}=0,-1 \leqslant k \leqslant N-1, \tag{13}
\end{align*}
$$

Now, we will give the representation of numerical solution to semi-discrete problem (12)-(13) in the space \mathbb{X}_{M}.

S-A(II): Find the spectral approximation $u_{M}^{k+1} \in \mathbb{X}_{M}(k=0,1,2, \cdots, N-1)$, such that for all $v_{M} \in \mathbb{X}_{M}$:

$$
\begin{align*}
& \mathcal{S}_{1, \alpha, \delta t}\left\langle u_{M}^{k+1}, v_{M}\right\rangle_{M}+\bar{c}_{\alpha, \delta t}^{-1} \gamma a_{\omega}\left\langle u_{M}^{k+1}, v_{M}\right\rangle \\
& =\left\langle\mathcal{P}_{t}^{\alpha} u_{M}^{k}, v_{M}\right\rangle_{M}+\left\{\begin{array}{l}
\left\langle I_{M}^{c} G^{0}, v_{M}\right\rangle_{M}, k=0, \\
\left\langle I_{M}^{c} G^{k}, v_{M}\right\rangle_{M}, k \geqslant 1,
\end{array}\right. \tag{14}
\end{align*}
$$

where

$$
G^{k}=\left\{\begin{array}{lr}
\mathcal{Q}\left(u_{M}^{0}\right)+F^{1}, & k=0, \\
2 \mathcal{Q}\left(u_{M}^{k}\right)-\mathcal{Q}\left(u_{M}^{k-1}\right)+F^{k+1}, & k \geqslant 1 .
\end{array}\right.
$$

Similar to Theorem 2.8, we have the following theorem:
Theorem 2.9 Let $u_{M}^{k+1} \in \mathbb{X}_{M}, k=0,1, \cdots, N-1$ be the solution of scheme (14). Then the scheme (14) is unconditionally stable in the sense that for all $\delta t>0$.

3. Illustrative test problems and discussion

We have studied some numerical examples to test the performance of the proposed methods. We illustrate the accuracy and stability of the proposed methods by performing $\mathbf{S}-\mathbf{A}(\mathbf{I})$ and $\mathbf{S}-\mathbf{A}(\mathbf{I I})$ for different values of M and N.

1. (Error measurement criterion) As the exact solution is known, the maximum absolute error $\mathrm{e}_{\infty}^{M, N}$ and the root mean square error $\mathrm{e}_{r m s}^{M, N}$ are measured with the following formulas:

$$
\mathrm{e}_{\infty}^{M, N}=\max _{0 \leqslant i \leqslant M}\left|\mathcal{U}^{N}\left(z_{i}\right)-u_{M}^{N}\left(z_{i}\right)\right|,
$$

and

$$
\mathrm{e}_{r m s}^{M, N}=\sqrt{\frac{1}{M+1} \sum_{i=0}^{M}\left|\mathcal{U}^{N}\left(z_{i}\right)-u_{M}^{N}\left(z_{i}\right)\right|^{2}} .
$$

2. (Convergence ratio) As the exact solution is known, the convergence ratio is given by

$$
\text { Ratio }=\log _{2}\left[\frac{\mathrm{e}_{\infty}^{M, N / 2}}{\mathrm{e}_{\infty}^{M, N}}\right] .
$$

Example 3.1 Consider Eq. (1) on $(-1,1) \times(0,1]$ with the following terms

$$
\left\{\begin{array}{l}
\text { Parameters: } \lambda_{1}=1, \lambda_{2}=1, \gamma_{1}=1, \gamma_{2}=1, \\
\text { Source term }: f(x, t)=3 e^{t} \sin (2 \pi x)-e^{\frac{\alpha t}{-1+\alpha}} \sin (2 \pi x)+4 e^{t} \sin (2 \pi x) \pi^{2}, \\
\text { Initial condition: }: \mathcal{U}(x, 0)=\sin (2 \pi x), \\
\text { Dirichlet boundary conditions : } \mathcal{U}(-1, t)=\mathcal{U}(1, t)=0 .
\end{array}\right.
$$

The exact solution of 3.1 is given by $\mathcal{U}(x, t)=e^{t} \sin (2 \pi x)$.
Experimental results of S-A(I): Table 1 presents the experimental results of S-A(I) in temporal direction based on Chebyshev polynomials for Example 3.1 with $\alpha=0.2,0.4,0.7,0.8$. From the obtained results given in Table 1, we observe that, the numerical results agree precisely with the theoretical rate of convergence. More detailed observation of changes of $\log _{10}\left[\mathrm{e}_{\infty}^{M, N}\right]$ and $\log _{10}\left[\mathrm{e}_{r m s}^{M, N}\right]$ against N for $\alpha=0.1,0.15,0.6,0.81$ are plotted in Figures 1 (f1-f4). To check the spatial accuracy, we present the maximum absolute error $\mathrm{e}_{\infty}^{M, N}$ and the root mean square error $\mathrm{e}_{\mathrm{rms}}^{M, N}$ for $\alpha=0.1,0.15,0.6,0.81$ with respect to the polynomial degree M for $N=160$ in Figures 2 (f5-f8).

Table 1. S-A(I): The maximum absolute error $\mathrm{e}_{\infty}^{M, N}$ and the root mean square error $\mathrm{e}_{r m s}^{M, N}$ for different values of α with $M=17$ (Example 3.1).

N	$\alpha=0.2$			$\alpha=0.4$		
	$\mathrm{e}_{\infty}^{M, N}$	$\mathrm{e}_{r m s}^{M, N}$	Ratio	$\mathrm{e}_{\infty}^{M, N}$	$\mathrm{e}_{r m s}^{M, N}$	Ratio
10	$3.3029 \mathrm{e}-3$	$2.0883 \mathrm{e}-3$	-	$4.7579 \mathrm{e}-3$	$3.0082 \mathrm{e}-3$	-
20	$1.6915 \mathrm{e}-3$	$1.0694 \mathrm{e}-3$	0.9654	$2.5442 \mathrm{e}-3$	1.6086e-3	0.9031
40	$8.5607 \mathrm{e}-4$	$5.4126 \mathrm{e}-4$	0.9825	$1.3160 \mathrm{e}-3$	$8.3204 \mathrm{e}-4$	0.9511
80	$4.3066 \mathrm{e}-4$	$2.7229 \mathrm{e}-4$	0.9912	$6.6929 \mathrm{e}-4$	$4.2317 \mathrm{e}-4$	0.9755
160	2.1598e-4	$1.3656 \mathrm{e}-4$	0.9956	$3.375 \mathrm{e}-4$	$2.1340 \mathrm{e}-4$	0.9877
320	$1.0816 \mathrm{e}-4$	$6.8385 \mathrm{e}-5$	0.9977	$1.6947 \mathrm{e}-4$	$1.0715 \mathrm{e}-4$	0.9939
N	$\alpha=0.7$			$\alpha=0.8$		
	$\mathrm{e}_{\infty}^{M, N}$	$\mathrm{e}_{\text {rms }}^{M, N}$	Ratio	$\mathrm{e}_{\infty}^{M, N}$	$\mathrm{e}_{\text {rms }}^{M, N}$	Ratio
10	$2.5040 \mathrm{e}-2$	$1.5831 \mathrm{e}-2$	-	$6.2126 \mathrm{e}-2$	$3.9280 \mathrm{e}-2$	-
20	$1.5109 \mathrm{e}-2$	$9.5528 \mathrm{e}-3$	0.7288	$4.0299 \mathrm{e}-2$	$2.5479 \mathrm{e}-2$	0.6244
40	$8.2872 \mathrm{e}-3$	$5.2396 \mathrm{e}-3$	0.8664	2.2915e-2	$1.4488 \mathrm{e}-2$	0.8144
80	$4.3385 \mathrm{e}-3$	$2.7431 \mathrm{e}-3$	0.9337	$1.2213 \mathrm{e}-2$	$7.7215 \mathrm{e}-3$	0.9079
160	$2.2195 \mathrm{e}-3$	$1.4033 \mathrm{e}-3$	0.9670	6.3035e-3	$3.9855 \mathrm{e}-3$	0.9542
320	$1.1225 \mathrm{e}-3$	$7.0973 \mathrm{e}-3$	0.9835	$3.2021 \mathrm{e}-3$	$2.0246 \mathrm{e}-3$	0.9771

Figure 1. $\mathbf{S}-\mathbf{A}(\mathbf{I})$: The changes of $\log _{10}\left(\mathrm{e}_{\infty}^{M, N}\right)$ and $\log _{10}\left(\mathrm{e}_{r m s}^{M, N}\right)$ against N for different values of α with $M=17$ (Example 3.1).

Example 3.2 Consider Eq. (1) on $(-1,1) \times(0,1]$ with the following terms

The exact solution of 3.2 is given by $\mathcal{U}(x, t)=e^{t} \sin (\pi x)$.
Experimental results of $\mathbf{S}-\mathbf{A (I I) : ~ T a b l e ~} 2$ presents the experimental results of $\mathbf{S}-\mathbf{A}(\mathbf{I I})$ in temporal direction based on Chebyshev polynomials for Example 3.2 with $\alpha=0.1,0.15,0.6$.

4. Conclusions

In this paper, a numerical method is developed to solve FM/IT model with C-FFD. Furthermore, the unconditional stability of the numerical method is discussed which provides the theoretical basis of the proposed method. The proposed method is computationally effective due to its simple implementation but with reasonable accuracy. It can be easily viewed from obtained numerical solutions and error norms that this is an excellent method to achieve a numerical solution of the timefractional Mobile/Immobile transport model.

Figure 2. $\quad \mathbf{S}-\mathbf{A}(\mathbf{I}):$ The changes of $\mathrm{e}_{\infty}^{M, N}$ and $\mathrm{e}_{r m s}^{M, N}$ against M for $\alpha=0.1,0.15,0.6,0.81$ with $N=320$ (Example 3.1).

Table 2. $\mathbf{S}-\mathbf{A}(\mathbf{I I}):$ The maximum absolute error $\mathrm{e}_{\infty}^{M, N}$ and the root mean square error $\mathrm{e}_{r m s}^{M, N}$ for different values of α with $M=16$ (Example 3.2).

α	N	80	160	320
1	$\mathrm{e}_{\infty}^{M, N}$	$1.4117 \mathrm{e}-3$	$7.2585 \mathrm{e}-3$	$3.6786 \mathrm{e}-3$
	$\mathrm{e}_{r m s}^{M, N}$	$8.6583 \mathrm{e}-3$	$4.4498 \mathrm{e}-3$	$2.2547 \mathrm{e}-4$
	Ratio	-	0.9597	0.9805
0.15	$\mathrm{e}_{\infty}^{M, N}$	$1.4445 \mathrm{e}-3$	$7.4247 \mathrm{e}-4$	$3.7635 \mathrm{e}-4$
	$\mathrm{e}_{r m s}^{M, N}$	$8.8597 \mathrm{e}-4$	$4.5517 \mathrm{e}-4$	$2.3067 \mathrm{e}-4$
	Ratio	-	0.9602	0.9803
0.6	$\mathrm{e}_{\infty}^{M, N}$	$6.8372 \mathrm{e}-3$	$3.4971 \mathrm{e}-3$	$1.7683 \mathrm{e}-3$
	$\mathrm{e}_{r m s}^{M, N}$	$4.1907 \mathrm{e}-3$	$2.1433 \mathrm{e}-3$	$1.0837 \mathrm{e}-3$
	Ratio	-	0.9672	0.9838

References

[1] A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A: Statistical Mechanics and Its Applications, 505 (2018) 688-706.
[2] A. Atangana, On the new fractional derivative and application to nonlinear Fishers reaction-diffusion
equation, Applied Mathematics and Computation, 273 (2016) 948-956.
[3] A. Atangana and B. S. T. Alkahtani, Extension of the resistance, inductance, capacitance electrical circuit to fractional derivative without singular kernel, Advances in Mechanical Engineering, 7 (6) (2015) 1-9.
[4] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2) (2016) 763-769.
[5] A. Atangana and J. F. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133 (4) (2018) 1-22.
[6] A. Atangana and S. Qureshi, Modeling attractors of chaotic dynamical systems with fractal-fractional operators, Chaos, Solitons and Fractals, 123 (2019) 320-337.
[7] B. Baeumer, M. Kovacs and M. M. Meerschaert, Numerical solutions for fractional reactiondiffusion equations, Computers and Mathematics with Applications, 55 (10) (2008) 2212-2226.
[8] D. Baleanu, A. Mousalou and S. Rezapour, A new method for investigating approximate solutions of some fractional integro-differential equations involving the Caputo-Fabrizio derivative, Advances in Difference Equations, 2017 (1) (2017) 1-22.
[9] C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces, Mathematics of Computation, 38 (157) (1982) 67-86.
[10] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015) 73-85.
[11] C. Chen, F. Liu, I. Turner and V. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion, Journal of Computational Physics, 227 (2) (2007) 886-897.
[12] W. Chen, L. Ye and H. Sun, Fractional diffusion equations by the Kansa method, Computers and Mathematics with Applications, 59 (5) (2010) 1614-1620.
[13] E. F. Goufo and S. Kumar, Shallow water wave models with and without singular kernel: Existence, uniqueness, and similarities, Mathematical Problems in Engineering, 2017 (2017) 1-9.
[14] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Boston, (2006).
[15] Z. Liu, A. Cheng and X. Li, A second-order finite difference scheme for quasilinear time-fractional parabolic equation based on new fractional derivative, International Journal of Computer Mathematics, 95 (2) (2017) 396-411.
[16] J. A. Machado and V. Kiryakova, Recent history of the fractional calculus: Data and statistics, In: A. Kochubei and Y. Luchko (eds), Basic Theory, De Gruyter, Berlin, Boston, (2019) 1-22.
[17] S. Saitoh and Y. Sawano, Theory of Reproducing Kernels and Applications, Springer, Singapore, (2016).
[18] B. Sharma, S. Kumar, C. Cattani and D. Baleanu, Nonlinear dynamics of Cattaneo-Christov heat flux model for third-grade power-law fluid, Journal of Computational and Nonlinear Dynamics, 15 (1) (2019) 011009.
[19] A. A. Tateishi, H. V. Ribeiro and E. K. Lenzi, The role of fractional time-derivative operators on anomalous diffusion, Frontiers in Physics, 5 (2017) 1-9.
[20] A. Valli and A. Quarteroni, Numerical Approximation of Partial Differential Equations, Springer, Berlin, (2008).
[21] S. B. Yuste, L. Acedo and K. Lindenberg, Reaction front in an $A+B \rightarrow C$ reaction-subdiffusion process, Physical Review E, 69 (3) (2004) 036126.
[22] P. Zhuang, F. Liu, V. Anh and I. Turner, Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process, IMA Journal of Applied Mathematics, 74 (5) (2009) 645-667.

[^0]: *Corresponding author. Email: sadegh.sadeghi@gmail.com

