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Abstract.This paper deals with a spectral collocation method for the numerical solution of
linear and nonlinear fractal Mobile/Immobile transport (FM/IT) model with Caputo-Fabrizio
fractional derivative (C-F-FD). In the time direction, the finite difference procedure is used to
construct a semi-discrete problem and afterwards by applying a Chebyshev-spectral method,
we obtain the approximate solution. The unconditional stability of the proposed method is
proved which provides the theoretical basis of proposed method for solving the considered
equation. Finally, some numerical experiments are included to clarify the efficiency and ap-
plicability of our proposed concepts in the sense of accuracy and convergence ratio.
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1. Introduction

In the last decades, the use of fractional-order derivatives has become popular due
to its nonlocality property which is an intrinsic property of many complex systems.
The fractional-order derivatives are widely applied in modeling of physical phe-
nomena such as viscoelasticity, electrochemistry, electromagnetic, nanotechnology,
control theory of dynamical systems, financial modeling, random walk, anoma-
lous transport and anomalous diffusion, porous materials, and biological modeling
[14, 16]. Several researchers studied fractional calculus that we can mention the
following works:
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Atangana and Baleanu [4] suggested a new fractional derivative with nonlocal and
nonsingular kernel for solving fractional heat in material with different scales and
also those with heterogeneous media. Sharma et al. analyzed [18] nonlinear dynam-
ics of CattaneoChristov heat flux model for third-grade power-law fluid. Tateishi
and et al. [19] solved the fractional diffusion equation without external forces and
according to the free diffusion boundary conditions. Atangana and Qureshi [6] pro-
posed fractal-fractional derivatives which estimate the chaotic behavior of some
attractors from applied mathematics. Yuste and Acedo [21] suggested a set of con-
tinuum fractional diffusion equations to investigate the behavior of a reaction front
in the A + B → C reactionsubdiffusion process. The concept of fractional-order
derivatives based on of the exponential and Mittag-Leffler laws, are described in
[1, 5].
Recently, fractional partial differential equations (FPDEs) have attracted in-

creasing attention in both theory and application. The superior capabilities of
FPDEs to accurately model different phenomena have raised significant interest
in assaying analytical and numerical methods for obtaining the solutions to such
problems. It is usually difficult to obtain closed-form solutions for FPDEs. There-
fore, the approximate solutions of these equations have been the subject of many
publications. From the numerical point of view, some various approximation meth-
ods have been presented for solving FPDEs. The main aim of [11] is to propose
an implicit difference approximation scheme (IDAS) for the numerical solution of
fractional diffusion equation. Baeumer et al. [7] developed a practical method based
on operator splitting for solving of fractional reaction-diffusion equations. Chen et
al. [12] applied the Kansa method for solving the time fractional diffusion equa-
tions, in which the Multi-Quadrics and thin plate spline serve as the radial basis
function. The main aim of [22] is to present an implicit numerical method to solve
the nonlinear fractional reactionsubdiffusion equations.
Recently, Caputo and Fabrizio [10] have defined a new fractional derivative with-

out a singular kernel. The new definition is called as the CaputoFabrizio fractional
derivative (C-F-FD) by some researchers. The models with the new C-F-FD can
describe the fluctuations of different scales and material heterogeneities, which can-
not be described by classical local theories or by fractional models with a singular
kernel. So far, some researchers have started analytical and numerical studies on
the basis of the new C-F-FD; see [2, 3, 8, 13]. However, the studies on the numerical
methods for FPDEs with the C-F-FD have been rarely reported.
In this paper, we deal with the linear and nonlinear fractal Mobile/Immobile

transport (FM/IT) model with C-F-FD [15]:

Linear FM/IT model with C-F-FD:

λ1
∂U(x, t)

∂t
+ λ2

CF
0 ∂α

t U(x, t) = γ1∂
2
xU(x, t)− γ2U(x, t) + f(x, t), (1)

Nonlinear FM/IT model with C-F-FD:

λ1
∂U(x, t)

∂t
+ λ2

CF
0 ∂α

t U(x, t) = γ∂2
xU(x, t) +Q(U) + f(x, t), (2)

where (x, t) ∈ Ω × (0, T ], Ω = (−1, 1), U = U(x, t) is a sufficiently differentiable
function in Ω× [0, T ] and the time-fractional derivative CF

0 ∂α
t U(x, t) is the C-F-FD
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defined by

CF
0 ∂α

t U(x, t) :=
∫ t

0

∂U(x, s)
∂s

ϑα(t− s)ds, 0 < α < 1,

in which ϑα(t) :=
exp(− α

1−α
(t))

1−α .
The term Q(U) in (2) satisfies the following conditions:

• There exists a positive constant c such that |Q(U)| ⩽ c|U|,
• There exists a positive constant c such that |Q′

(U)| ⩽ c.

For Eqs. (1) and (2), the initial condition:

U(x, t)|t=0 = h(x), x ∈ Ω, (3)

and the Dirichlet boundary conditions:

U(x, t)|x∈∂Ω = 0, t > 0, (4)

are considered.
In this paper, we present a spectral method to compute the approximate solution

for linear and nonlinear FM/IT models with C-F-FD. The rest of this paper is or-
ganized as follows. In Section 2, we present a computational approach to construct
numerical solution for fractal Mobile/Immobile transport model with C-F-FD. We
prove the convergence and the stability of the method in this section. Some test
problems are presented and the results are shown in Section 3 and we discuss
the numerical performance of our method. Finally, in Section 4 some concluding
remarks are presented.

2. FM/IT model with C-F-FD

2.1 Linear FM/IT model with C-F-FD

2.1.1 Discretization of C-F-FD and semi-discrete scheme

In this subsection, we deal with the linear FM/IT model with C-F-FD. For
discretization of time variable, let tk := kδt, k = 0, 1, ..., N be an equidistant
partition of [0, T ], where δt = T

N . We analogize the C-F-FD term by using the
finite difference scheme:

CF
0 ∂α

t Uk+1(x)

=

{
c̄α,δt[Dk+1

α,k+1(Uk+1(x)− Uk(x)) +
∑k

j=1 D
k+1
α,j (U j(x)− U j−1(x))], k ⩾ 1

c̄α,δtD1
α,1(U1(x)− U0(x)), k = 0,

+ rk+1
U (x),

(5)

where

c̄α,δt = (αδt)−1,

and

Dk+1
α,j = exp(− αδt

1− α
(k + 1− j))− exp(− αδt

1− α
(k − j + 2)), (j = 1, 2, · · · , k + 1).
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Theorem 2.1 ([15]) For any 0 < α < 1, the coefficients of Dk+1
α,j , j = 1, 2, · · · , k+

1 satisfy the following properties

• Dk+1
α,j > 0, ∀j ⩽ k + 1;

• Dk+1
α,j ⩽ Dk+1

α,j+1, ∀j ⩽ k;

• Dk+1
α,k+1 = D1

α,1, Dk+1
α,k = D2

α,1;

•
∑k−1

j=1(D
k+1
α,j+1 −Dk+1

α,j ) +Dk+1
α,1 = Dk+1

α,k = D2
α,1.

Theorem 2.2 ([15]) For any 0 < α < 1, it holds

rk+1
1,U (x) = − 1

1− α

k+1∑
j=1

∫ tj

tj−1

(s− tj− 1

2
)
∂2U(x, s)

∂s2
|s=ςj exp(−

α

1− α
(tk+1 − s))ds,

|rk+1
1,U (x)| ⩽ c

α
exp(

2α

1− α
) max
t∈(0,T ]

|∂2
t U(x, t)|δt2, − 1 ⩽ k ⩽ N − 1, ∀x ∈ Ω,

where ςj ∈ (tj−1, tj) and c are independent of δt.

Also, the first order temporal derivative can be approximated as follows

∂Uk+1(x)

∂t
=

Uk+1(x)− Uk(x)

δt
+ rk+1

2,U (x), (6)

where the truncation error rk+1
2,U (x) satisfies |rk+1

2,U (x)| ⩽ cmaxt∈(0,T ] |∂2
t U(x, t)|δt,

in which c is independent δt.
Substituting (5) and (6) into (1), we get

B1,α,δtUk+1(x)− c̄−1
α,δtγ1∂

2
xUk+1(x) = Pα

t Uk(x) + F k+1(x) +Rk+1
U (x), x ∈ Ω,

where

Pα
t Uk(x)

=

{
(λ1α+ λ2D1

α,1)U0(x), k = 0,

B2,α,δtUk(x) + λ2
∑k−1

j=1(D
k+1
α,j+1 −Dk+1

α,j )U j(x) + λ2Dk+1
α,1 U0(x), k ⩾ 1,

F k+1 = c̄−1
α,δtf(x, tk+1), k = 0, 1, · · · , N − 2, U0(x) = h(x),

and

B1,α,δt = λ1α+ λ2D1
α,1 + γ2c̄

−1
α,δt, B2,α,δt = λ1α+ λ2(D1

α,1 −D2
α,1).

Furthermore, the truncation error Rk+1
U (x) satisfy

|Rk+1
U (x)| ⩽ c

α
exp(

2α

1− α
) max
t∈(0,T ]

|∂2
t U(x, t)|δt2, − 1 ⩽ k ⩽ N − 1, ∀x ∈ Ω.

Replacing Uk+1(x) by the approximate solution uk+1(x), we can obtain the follow-
ing semi-discrete problem for (1) and (3)-(4), which is given by:
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Scheme I: Given u0 = h(x) and find uk+1 (k = 0, 1, 2, · · · , N − 1), such that:

{
B1,α,δtu

k+1(x)− c̄−1
α,δtγ1∂

2
xu

k+1(x) = Pα
t u

k(x) + F k+1(x), x ∈ Ω,

uk+1|x∈∂Ω = 0,−1 ⩽ k ⩽ N − 1,
(7)

2.1.2 Spectral approximation to semi-discrete problem (7)

Consider the Hilbert space of µ-measurable L2((−1, 1), dµ(x)), where

dµ(x) = w(x)dx = (1− x2)−
1

2dx.

Furthermore, the Hilbert space L2((−1, 1), dµ(x)) is equipped with inner product

⟨u, v⟩0,ω =

∫ 1

−1
u(x)v(x)(1− x2)−

1

2d(x).

Theorem 2.3 ([17]) Let PM denote the set of polynomials of degree⩽ M . If BM

be a sequence of orthogonal polynomials on (−1, 1) of degree⩽ M , i.e.,

BM = {u ∈ PM |⟨u, v⟩0,ω = 0, ∀v ∈ PM−1},

then there exists a reproducing kernel KM : (−1, 1)× (−1, 1) → R such that

u(x) = ⟨u,KM (x, .)⟩0,ω, ∀u ∈ PM ,∀x ∈ (−1, 1),

and

0 = ⟨(x+ 1)u,KM (−1, .)⟩0,ω = ⟨(1− x)u,KM (1, .)⟩0,ω, ∀u ∈ PM−1.

Let {TM}M⩾0 be the Chebyshev polynomials in L2((−1, 1), dµ(x)) with
degree(PM ) = M , we consider

qM (x) =
TM+2(x) + cMTM+1(x) + dMTM (x)

(1− x)(x+ 1)
∈ PM ,

where

cM = − [TM+2(1)TM (−1) + TM+2(−1)TM (1)]

[TM (−1)TM+1(1)− TM (1)TM+1(−1)]
,

dM = − [TM+2(TM+1(−1) + TM+2(−1)TM+1(1)]

[TM (1)TM+1(−1)− TM (−1)TM+1(1)]
.

Hence, {qM}M⩾0 is a sequence of orthogonal polynomials in L2((−1, 1), dµ̃(x))
equipped with inner product

⟨u, v⟩2,ω̃ =

∫ 1

−1
u(x)v(x)dµ̃(x), dµ̃(x) = ω̃(x)dx = (1− x)(x+ 1)(1− x2)−

1

2dx.
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It is shown in [17] that

KM−2(x, y) =

M−2∑
m=0

qm(x)qm(y)

∥qm∥22,ω̃

=
kM (qM−1(x)qM−2(y)− qM−2(x)qM−1(y))

kM+1∥qM−2∥20,ω̃(x− y)
, x ̸= y,

where KM−2(., y) ∈ PM−2 and −kM+1 < 0 is the leading coefficient of xM+1 in
(x+ 1)(1− x)qM−1(x).
We also have

KM−2(x, x) =
M−2∑
m=0

q2m(x)

∥qm∥20,ω̃
=

kM (q
′

M−1(x)qM−2(x)− q
′

M−2(x)qM−1(x))

kM+1∥qM−2∥20,ω̃
.

Suppose that {zj}M−1
j=1 denote the M − 1 simple zero points of qM−1 on (−1, 1),

then we have

KM−2(zi, zj) =
M−2∑
m=0

qm(zi)qm(zj)

∥qm∥20,ω̃
=

{
0, i ̸= j,

ω̃−1
i =

kMq
′
M−1(zi)qM−2(zi)

kM+1∥qM−2∥0,ω̃
, i = j.

Let {zj}Mj=0 denote the M + 1 simple zero points of (x+ 1)(1− x)qM−1 on [−1, 1],

it is well known [17] that there exists a unique set of quadrature weights {ωj}Mj=0
such that we have∫ 1

−1
u(x)

1√
1− x2

dx =
M∑
j=0

ωju(zj), ∀u ∈ P2M−1, zj = − cos
πj

M
, j = 0, · · · ,M,

where

ωj =
π

σjM
, j = 0, 1, · · · ,M,

in which

σj =

{
2, j = 0,M,
1, 1 ⩽ j ⩽ M − 1,

An approximant ukM to uk can be obtained by calculating a truncated series based
on

PM = span{ϕj(x), j = 0, 1, · · · ,M},

ϕj(x) =
(x+ 1)(1− x)qM−1(x)

((x+ 1)(1− x)qM−1(x))
′ |x=zj (x− zj)

as

uk(x) ≈ ukM (x) := Φ(x){v}k,
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where

Φ(x) = (ϕ0(x), ϕ1(x), · · · , ϕM (x)),

and

{v}k = (vk0 , v
k
1 , · · · , vkM )T .

Also dm

dxmΦ(x) can be expressed in the following matrix form

dm

dxm
Φ(x) = Φ(x)Dm, m ⩾ 1,

where

D = [Dij ] = [ϕ
′

j(zi)], i, j = 0, 1, · · · ,M, Dm = DD · · ·D︸ ︷︷ ︸
m

.

The entries of the first-order differentiation matrix D can be determined by

Dij =


((x−a)(b−x)qM−1(x))

′ |x=zi

((x−a)(b−x)qM−1(x))
′ |x=zj

(zi−zj)
, i ̸= j,

((x−a)(b−x)qM−1(x))
′′ |x=zi

2((x−a)(b−x)qM−1(x))
′′ |x=zi

, i = j.

=


−2M2+1

6 , i = j = 0,
σi

σj

(−1)i+j

zi−zj
, i ̸= j, 0 ⩽ i, j ⩽ M,

− zi
2(1−z2

k)
, i = j, 1 ⩽ i, j ⩽ M − 1,

2M2+1
6 , i = j = M.

Then, we approximate ∂m
x ukM by

∂m
x ukM (x) := Φ(x)Dm{v}k, m ⩾ 1.

Thus, we have:

dm

dxm
ukM (zi) =

M∑
j=0

(Dm)ijv
k
j ,m ⩾ 1, 1 ⩽ i ⩽ M − 1.

We define the corresponding discrete inner product as

⟨u, v⟩M =
M∑
j=0

ωju(zj)v(zj),

which induces the norm ∥u∥M = (⟨u, u⟩M,ω)
1

2 and satisfies

⟨u, v⟩M = ⟨u, v⟩0,ω, ∀u, v : u.v ∈ P2M−1.

Consider the weight Sobolov space Hr((−1, 1), dµ(x)) as

Hr((−1, 1), dµ(x)) = {u ∈ L2((−1, 1), dµ(x)) : ∥u∥r,ω = (

r∑
j=0

∥∂xu∥20,ω)
1

2 < ∞},
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moreover, we set H1
0 ((−1, 1), dµ(x)) = {u ∈ L2((−1, 1), dµ(x)) : ∂xu ∈

L2((−1, 1), dµ(x)), u(−1) = u(1) = 0}, we also introduce the the bilinear form
over H1

0 ((−1, 1), dµ(x)) as

aω⟨u, v⟩ = ⟨∂xu, ω−1∂x(vω)⟩0,ω =

∫ 1

−1
∂xu∂x(vω)dx, ∀u, v ∈ H1

0 ((−1, 1), dµ(x)).

Now, we will give the representation of numerical solution to semi-discrete problem
(7) in the space PM .
Given u0M = IcMu0 and find uk+1

M ∈ PM (k = 0, 1, 2, · · · , N − 1), such that:

{
B1,α,δtu

k+1
M (zi)− c̄−1

α,δtγ1∂
2
xu

k+1
M (zi) = Pα

t u
k
M (zi) + F k+1(zi), 1 ⩽ i ⩽ M − 1,

uk+1
M (zi) = 0, i = 0,M, − 1 ⩽ k ⩽ N − 1,

(8)

where

Pα
t u

k
M (zi)

=

{
(λ1α+ λ2D1

α,1)u
0
M (zi), k = 0,

B2,α,δtu
k
M (zi) + λ2

∑k−1
j=1(D

k+1
α,j+1 −Dk+1

α,j )ujM (zi) + λ2Dk+1
α,1 u0(zi), k ⩾ 1,

and IcM : C[a, b] → PM is the interpolation operator associated with {zi, ωi}Mj=0
such that

(IcMu)(zi) = u(zi), i = 0, 1, 2, · · · ,M.

Let us denote XM = {vM |vM ∈ PM , vM (z0) = vM (zM ) = 0.}, we can reformulate
the scheme (8) as the following:
S-A(I): Find the spectral approximation uk+1

M ∈ XM (k = 0, 1, 2, · · · , N − 1), such
that for all vM ∈ XM :

B1,α,δt⟨uk+1
M , vM ⟩M + c̄−1

α,δtγ1aω⟨u
k+1
M , vM ⟩ = ⟨Pα

t u
k
M , vM ⟩M + ⟨IcMF k+1, vM ⟩M .(9)

The approximate solution ukM can be obtained by calculating a truncated series
based on PM = span{ϕj(x), j = 0, 1, · · · ,M} as the following

uk(x) ≈ ukM (x) := Φ(x){v}k.

Therefore, we get

{∑M
j=0

[
B1,α,δtδij − c̄−1

α,δtγ1(D
2)ij

]
vk+1
j = 𝟋k+1(zi), 1 ⩽ i ⩽ M − 1,

Φ(z0){v}k+1 = Φ(zM ){v}k+1 = 0.
(10)

where

𝟋k+1(zi) = Pα
t u

k
M (zi) + F k+1(zi), 1 ⩽ i ⩽ M − 1,
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Let us denote

(B)ij = B1,α,δtδij − c̄−1
α,δtγ1(D

2)ij , 1 ⩽ i ⩽ M − 1, 0 ⩽ j ⩽ M,

(B)0j = δ0j , (B)Mj = δMj , 0 ⩽ j ⩽ M,

{c}k+1 = (0,𝟋k+1(z1),𝟋k+1(z2), · · · ,𝟋k+1(zM−1), 0)
T ,

{v}k+1 = (vk+1
0 , vk+1

1 , · · · , vk+1
M )T ,

then, the linear system (10) reduces to

B{v}k+1 = {c}k+1, k = 0, 1, · · · , N − 1.

Lemma 2.4 ([9])For any u ∈ PM , we have

∥u∥0,ω ⩽ ∥u∥M ⩽
√
2∥u∥0,ω.

Lemma 2.5 ([9]) If u ∈ H1
0 ((−1, 1), dµ(x)), then there holds

∥u∥0,ω ⩽ c∥∂xu∥0,ω,

where c is positive constant independent of u.

Lemma 2.6 ([9]) For any u ∈ H1
0 ((−1, 1), dµ(x)), we have

|aω⟨u, u⟩| ⩽ c∥∂xu∥20,ω,

aω⟨u, u⟩ ⩾
1

4
∥∂xu∥20,ω,

where c is positive constant independent of u.

Lemma 2.7 ([20]) (Discrete Gronwall inequality) Let {fi}∞i=1 and {gi}∞i=1 are
nonnegative sequences and c is a nonnegative constant. If

fi ⩽ c+
i−1∑
j=0

gjfj , i ⩾ 0,

then

fi ⩽ c
∏

0⩽j⩽i−1

(1 + gj) ⩽ ce
∑i−1

j=0 gj , i ⩾ 0.

Theorem 2.8 Let uk+1
M ∈ XM , k = 0, 1, · · · ,M − 1 be the solution of scheme (9).

Then the scheme (9) is unconditionally stable in the sense that for all δt > 0.

Proof We know ∥uk+1
M ∥0,ω ⩽ c∥∂xuk+1

M ∥0,ω. Set

C1,α,δt = min{γ2c̄−1
α,δt,

c̄−1
α,δtγ1

4
},

C2,α,δt = max{λ2,
λ1α

√
2c

(D1
α,1 −D2

α,1)
},
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therefore, we can get the following inequality

∥uk+1
M ∥2M + ∥∂xuk+1

M ∥20,ω ⩽
k∑

j=1

C2,α,δt

C1,α,δt
(Dk+1

α,j+1 −Dk+1
α,j )(∥ujM∥2M + ∥∂xujM∥20,ω)

+ λ2C
−1
1,α,δtD

k+1
α,1 ∥u0M |2M +

1

3C1,α,δt(λ1α+ λ2D1
α,1)

∥IcMF k+1∥2M .

Noting Lemma 2.7, we have

∥uk+1
M ∥2M + ∥∂xuk+1

M ∥20,ω ⩽
(
∥u0M∥2M + ∥IcMF k+1∥2M

)
e

C2,α,δt

C1,α,δt
(D1

α,1−Dk+1
α,1 )

. (11)

where C1,α,δt = max{λ2C
−1
1,α,δtD

k+1
α,1 , 1

3C1,α,δt(λ1α+λ2D1
α,1)

} and C2,α,δt =
C2,α,δt

C1,α,δt
.

Using (11), the following inequality is holds

∥uk+1
M − ũk+1

M ∥2M ⩽ ∥uk+1
M − ũk+1

M ∥2M + ∥|∂xuk+1
M − ∂xũ

k+1
M ∥2M

⩽ C1,α,δt∥u0M − ũ0M∥2MeC2,α,δt(D1
α,1−Dk+1

α,1 ).

This completes the proof of Theorem 2.8. ■

2.2 Nonlinear FM/IT model with C-F-FD

2.2.1 Semi-discrete scheme and spectral approximation

In this subsection, we consider the nonlinear FM/IT model with C-F-FD.
Using Taylor series expansion, we have{

Q(U1) = Q(U0) +QU (Uϑ)∂tU(x, tτ )δt, k = 0
Q(Uk+1) = 2Q(Uk)−Q(Uk−1) +O(δt2), k ⩾ 1.

Therefore, we can get:

S1,α,δtUk+1(x)− c̄−1
α,δtγ∂

2
xUk+1(x)

= Pα
t Uk(x) +

{
Q(U0) + F 1(x), k = 0,
2Q(Uk)−Q(Uk−1) + F k+1(x), k ⩾ 1,

+Rk+1
U (x),

where

Pα
t Uk(x)

=

{
(S2,α,δt + λ2D2

α,1)U0(x), k = 0,

S2,α,δtUk(x) + λ2
∑k−1

j=1(D
k+1
α,j+1 −Dk+1

α,j )U j(x) + λ2Dk+1
α,1 U0(x), k ⩾ 1,

F k+1 = c̄−1
α,δtf(x, tk+1), k = 0, 1, · · · , N − 2, U0(x) = h(x),

and

S1,α,δt = λ1α+ λ2D1
α,1, S2,α,δt = λ1α+ λ2(D1

α,1 −D2
α,1).
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Furthermore, it holds

|Rk+1
U (x)| ⩽ c

α
exp(

2α

1− α
) max
t∈(0,T ]

|∂2
t U(x, t)|δt2, − 1 ⩽ k ⩽ N − 1, ∀x ∈ Ω.

Replacing Uk+1(x) by the approximate solution uk+1(x), we can obtain the follow-
ing semi-discrete problem for (2) and (3)-(4), which is given by:
Scheme II: Given u0 = h(x) and find uk+1 (k = 0, 1, 2, · · · , N − 1), such that

S1,α,δtu
k+1(x)−c̄−1

α,δtγ∂
2
xu

k+1(x)

= Pα
t u

k(x) +

{
Q(u0) + F 1(x), k = 0,
2Q(uk)−Q(uk−1) + F k+1(x), k ⩾ 1,

(12)

uk+1|x∈∂Ω = 0,−1 ⩽ k ⩽ N − 1, (13)

Now, we will give the representation of numerical solution to semi-discrete problem
(12)-(13) in the space XM .
S-A(II): Find the spectral approximation uk+1

M ∈ XM (k = 0, 1, 2, · · · , N − 1),
such that for all vM ∈ XM :

S1,α,δt⟨uk+1
M , vM ⟩M + c̄−1

α,δtγaω⟨u
k+1
M , vM ⟩

= ⟨Pα
t u

k
M , vM ⟩M +

{
⟨IcMG0, vM ⟩M , k = 0,
⟨IcMGk, vM ⟩M , k ⩾ 1,

(14)

where

Gk =

{
Q(u0M ) + F 1, k = 0,

2Q(ukM )−Q(uk−1
M ) + F k+1, k ⩾ 1.

Similar to Theorem 2.8, we have the following theorem:

Theorem 2.9 Let uk+1
M ∈ XM , k = 0, 1, · · · , N−1 be the solution of scheme (14).

Then the scheme (14) is unconditionally stable in the sense that for all δt > 0.

3. Illustrative test problems and discussion

We have studied some numerical examples to test the performance of the proposed
methods. We illustrate the accuracy and stability of the proposed methods by per-
forming S-A(I) and S-A(II) for different values of M and N .
1. (Error measurement criterion) As the exact solution is known, the maxi-

mum absolute error eM,N
∞ and the root mean square error eM,N

rms are measured with
the following formulas:

eM,N
∞ = max

0⩽i⩽M
|UN (zi)− uNM (zi)|,

and

eM,N
rms =

√√√√ 1

M + 1

M∑
i=0

|UN (zi)− uNM (zi)|2.
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2. (Convergence ratio) As the exact solution is known, the convergence ratio is
given by

Ratio = log2

[
e
M,N/2
∞

eM,N
∞

]
.

Example 3.1 Consider Eq. (1) on (−1, 1)× (0, 1] with the following terms


Parameters : λ1 = 1, λ2 = 1, γ1 = 1, γ2 = 1,

Source term : f(x, t) = 3et sin(2πx)− e
αt

−1+α sin(2πx) + 4et sin(2πx)π2,
Initial condition : U(x, 0) = sin(2πx),
Dirichlet boundary conditions : U(−1, t) = U(1, t) = 0.

The exact solution of 3.1 is given by U(x, t) = et sin(2πx).
Experimental results of S-A(I): Table 1 presents the experimental results of
S-A(I) in temporal direction based on Chebyshev polynomials for Example 3.1
with α = 0.2, 0.4, 0.7, 0.8. From the obtained results given in Table 1, we observe
that, the numerical results agree precisely with the theoretical rate of convergence.
More detailed observation of changes of log10[e

M,N
∞ ] and log10[e

M,N
rms ] against N for

α = 0.1, 0.15, 0.6, 0.81 are plotted in Figures 1 (f1-f4). To check the spatial accuracy,

we present the maximum absolute error eM,N
∞ and the root mean square error eM,N

rms

for α = 0.1, 0.15, 0.6, 0.81 with respect to the polynomial degree M for N = 160 in
Figures 2 (f5-f8).

Table 1. S-A(I): The maximum absolute error eM,N
∞ and the root mean square error

eM,N
rms for different values of α with M = 17 (Example 3.1).

α = 0.2 α = 0.4

N eM,N
∞ eM,N

rms Ratio eM,N
∞ eM,N

rms Ratio
10 3.3029e-3 2.0883e-3 - 4.7579e-3 3.0082e-3 -
20 1.6915e-3 1.0694e-3 0.9654 2.5442e-3 1.6086e-3 0.9031
40 8.5607e-4 5.4126e-4 0.9825 1.3160e-3 8.3204e-4 0.9511
80 4.3066e-4 2.7229e-4 0.9912 6.6929e-4 4.2317e-4 0.9755
160 2.1598e-4 1.3656e-4 0.9956 3.375e-4 2.1340e-4 0.9877
320 1.0816e-4 6.8385e-5 0.9977 1.6947e-4 1.0715e-4 0.9939

α = 0.7 α = 0.8

N eM,N
∞ eM,N

rms Ratio eM,N
∞ eM,N

rms Ratio
10 2.5040e-2 1.5831e-2 - 6.2126e-2 3.9280e-2 -
20 1.5109e-2 9.5528e-3 0.7288 4.0299e-2 2.5479e-2 0.6244
40 8.2872e-3 5.2396e-3 0.8664 2.2915e-2 1.4488e-2 0.8144
80 4.3385e-3 2.7431e-3 0.9337 1.2213e-2 7.7215e-3 0.9079
160 2.2195e-3 1.4033e-3 0.9670 6.3035e-3 3.9855e-3 0.9542
320 1.1225e-3 7.0973e-3 0.9835 3.2021e-3 2.0246e-3 0.9771
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(f1) α = 0.1 (f2) α = 0.15

(f3) α = 0.6 (f4) α = 0.81

Figure 1. S-A(I): The changes of log10(e
M,N
∞ ) and log10(e

M,N
rms ) against N for different

values of α with M = 17 (Example 3.1).

Example 3.2 Consider Eq. (1) on (−1, 1)× (0, 1] with the following terms



Parameters : λ1 = 1, λ2 = 1, γ = 1,
Nonlinear term : Q(U) = − sin(U),
Source term : f(x, t) = 2et sin(πx)− e

αt

−1+alpha sin(πx)+et sin(πx)π2

+ sin(et sin(πx)),
Initial condition : U(x, 0) = sin(πx),
Dirichlet boundary conditions : U(−1, t) = U(1, t) = 0.

The exact solution of 3.2 is given by U(x, t) = et sin(πx).
Experimental results of S-A(II): Table 2 presents the experimental results of
S-A(II) in temporal direction based on Chebyshev polynomials for Example 3.2
with α = 0.1, 0.15, 0.6.

4. Conclusions

In this paper, a numerical method is developed to solve FM/IT model with C-F-
FD. Furthermore, the unconditional stability of the numerical method is discussed
which provides the theoretical basis of the proposed method. The proposed method
is computationally effective due to its simple implementation but with reasonable
accuracy. It can be easily viewed from obtained numerical solutions and error
norms that this is an excellent method to achieve a numerical solution of the time-
fractional Mobile/Immobile transport model.
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(f5) α = 0.1 (f6) α = 0.15

(f7) α = 0.6 (f8) α = 0.81

Figure 2. S-A(I): The changes of eM,N
∞ and eM,N

rms against M for α = 0.1, 0.15, 0.6, 0.81
with N = 320 (Example 3.1).

Table 2. S-A(II): The maximum absolute error eM,N
∞ and the root mean square error

eM,N
rms for different values of α with M = 16 (Example 3.2).

α N 80 160 320

0.1 eM,N
∞ 1.4117e-3 7.2585e-3 3.6786e-3

eM,N
rms 8.6583e-3 4.4498e-3 2.2547e-4

Ratio - 0.9597 0.9805

0.15 eM,N
∞ 1.4445e-3 7.4247e-4 3.7635e-4

eM,N
rms 8.8597e-4 4.5517e-4 2.3067e-4

Ratio - 0.9602 0.9803

0.6 eM,N
∞ 6.8372e-3 3.4971e-3 1.7683e-3

eM,N
rms 4.1907e-3 2.1433e-3 1.0837e-3

Ratio - 0.9672 0.9838
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