تعداد نشریات | 418 |
تعداد شمارهها | 10,004 |
تعداد مقالات | 83,624 |
تعداد مشاهده مقاله | 78,492,417 |
تعداد دریافت فایل اصل مقاله | 55,514,563 |
Applying Kinetic Spectrophotometric Method and Artificial Neural Network Model for Determination of Metronidazole with Albizia Lebbeck Leaves-capped AgNPs Sensor in Blood and Urine Samples | ||
Journal of Applied Chemical Research | ||
دوره 16، شماره 4، دی 2022، صفحه 28-44 اصل مقاله (833.68 K) | ||
نوع مقاله: Original Article | ||
نویسندگان | ||
Elham Pournamdari* 1؛ Leila Niknam1؛ Farzaneh Marahel2 | ||
1Department of Science, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran | ||
2Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran | ||
چکیده | ||
The environmental pollution caused by drug antibiotic waste presents a foremost concern in the ecosystem, as high levels of these antibiotic drugs after consumption when released into the ecosystem, biological samples are accumulated and are producing overall contamination. Consequently, the need for selective, sensitive, fast, easy-to-handle, and low-cost early monitoring detection systems is growing. In this study, we used a prepared Albizia Lebbeck Leaves-capped AgNPs sensor to illustrate examples of friendly biosensors with their real application fields for the sensitive detection of the metronidazole drug in various matrices such as human fluids by kinetic spectrophotometric method. The calibration curve was linear in the range of (0.02 to 10.0 µg L −1 ). The standard deviation of less than (3%), and detection limits (3S/m) of the method (0.02 µg L −1 in time 8 min, 367 nm) were obtained for sensor level response Albizia Lebbeck Leaves-capped AgNPs with (95%) confidence evaluated. The artificial neural network model was used as a tool very low for determining mean square error (MSE 0.061) for metronidazole drug by Albizia Lebbeck Leaves-capped AgNPs sensor. The observed outcomes confirmed the suitability of recovery and a very low detection limit for measuring the metronidazole drug. The method introduced to measure metronidazole drugs in real samples such as urine and blood was used and can be used for other drugs environmental pollution and hospital samples. | ||
کلیدواژهها | ||
Metronidazole؛ Determination؛ Kinetic Spectrophotometric؛ Sensor؛ Neural Network Model | ||
مراجع | ||
[1]. S. Tanreh, A. Shameli, E. Balali, J. Appl. Chem. Res., 12(1), 79 (2018). [2]. J.P. Sylvestre, M.C. Tang, A. Furtos, G. Leclair, M. Meunier, J.C. Leroux, J. Contr. Rel., 149, 273 (2011). [3]. Y.P. Shiu, Y.M. Tang, X.F. Zhang, J. Ge, Z.C. Pu, Bangladesh. J. Pharmacol., 10, 383 (2015). [4]. J. Muller, P. Schildknecht, N. Muller, J. Antimicrob. Chemoth., 68, 1781 (2013). [5]. J. Han, L. Zhang, S. Yang, J. Wang, J. Environ. Contam. Toxicol., 92, 196 (2014). [6]. W. Jin, W. Li, Q. Xu, Q. Dong, J. Electrophoresis, 21(7), 1409 (2000). [7]. S. Ashour, N. Kattan, Int. J. Biolog. Sci., 6, 13 (2010). [8]. N.W. Ali, M. Gamal, M. Abdelkawy, J. Pharm. Sci., 26, 865 (2013). [9]. M. Silva, S. Schramm, E. Kano, E. Koono, V. Porta, C. Serra, J. Chromatogr., 47(9), 781 (2009). [10]. H. Liu, F. Li, R. Yang, L. Wang, Y. Ma, J. Chinese. Chromatogr., 27, 50 (2009). [11]. S.H. Lee, W.Y. Rho, S.J. Park, J. Kim, O.S. Kwon, B.H. Jun, J. Sci. Rep., 8, 16763 (2018). [12]. Sh. Bouroumand, F. Marahel, F. Khazali, Iran. J. Anal. Chem., 7(2), 47 (2020). [13]. J. Das, M. Dhua, J. Pharma. Sci. Tech., 3, 106 (2014). [14]. E. Roy, S.K. Maity, S. Patra, P.K. Sharma, RSC. Adv., 4, 32881 (2014). [15]. S.H. Lee, J.H. Sung, T.H. Park, J. Ann. Biomed. Eng., 40, 1384 (2012). [16]. A. Syafiuddin, M.R. Salmiati, A.B.H. Kueh, T. Hadibarata, H. Nur, J. Clin. Chem. Soc., 65, 732 (2017). [17]. M. Pargari, F. Marahel, B. Mombini Godajdar, J. Phys. Theor. Chem., 17(1,2), 1 (2020). [18]. X. Fang, H.X. Ren, H. Zhao, Z.X. Li, J. Microchim. Acta., 184, 415 (2017). [19]. B. Sadeghi, A. Rostami, S.S. Momeni, Spectrochim. Acta. A., 134, 326 (2015). [20]. F. Maghami, M. Abrishamkar, B. Mombeni Goodajdar, M. Hosseini, Desal Water Treat., 228, 389 (2021). [21]. X.F. Zhang, Z.G. Liu, W. Shen, S. Gurunathan, Int. J. Mol. Sci., 17, 1534 (2016). [22]. B. Khodadadi, M. Bordbar, M. Nasrollahzadeh, J. Colloid Interface Sci., 493, 85 (2017). [23]. C.M. Kaye, M. Sankey, L.A. Thomas, J. Clin. Pharmacology, 9, 528 (1980). [24]. L. Niknam, F. Marahel, J. Phys. Theor. Chem., 18, 37 (2021). [25]. J.S. Justin Packia Jacob, J. Colloid. Surfaces. B: Biointerfaces, 91, 212 (2012). [26]. F. Marahel, B. Mombeni Goodajdar, L. Niknam, M. Faridnia, E. Pournamdari, S. Mohammad Doost, Int. J. Environ. Anal. Chem., 101, 1 (2021). [27]. B. Mombeni Goodajdar, F. Marahel, L. Niknam, E. Pournamdari, E. Mousavi, Int. J. Environ. Anal. Chem., 101, 1 (2021). https://doi.org/10.1080/03067319.2021.1940159. [28]. H.R. Akbari Hasanjani, M.R. Sohrabi, Iran J. Pharma. Res., 16(2), 478 (2017). [29]. Z. Masoudyfar, S. Elhami, Spectrochim. Acta A. Mol. Biomol. Spectrosc., 211, 234 (2018). [30]. B. Khodadadi, M. Sabeti, O. Norozi, J. Appl. Chem. Res., 15(1), 46 (2021). [31]. C. Krishnaraj, E.G. Jagan, S. Jagan, P. Rajasekar, P.T. Selvakumar, N. Kalaichelvan, J. Colloids Surfaces B : BioInterfaces, 76, 50 (2010). [32]. P.K. Singh, K. Bhardwaj, P. Dubey, A. Prabhune, RSC. Adv., 5, 24513 (2015). [33]. M.A. Karimi, M.A. Mozaheb, A. Hate-Mehrjardi, H. Tavallali, A.M. Attaran, G. Deilamy-Rad, J. Scientia Iranica Trans. F. Nanotechnology, 22, 2736 (2015). [34]. A. Hatamie, F. Marahel, A. Sharifat, Talanta, 176, 518 (2018). [35]. N. Samadi, S. Narimani, J. Chem. Biolog. Phys. Sci., 6, 387 (2016). [36]. A. Ramzannezad, A. Hayati, A. Bahari, H. Najafi-Ashtiani, Iran. J. Basic Med. Sci., 24, 962 (2021). [37]. M. Mirsalari, S. Elhami, Spectrochim. Acta A. Mol. Biomol. Spectrosco., 240, 118617 (2020). [38]. X. Yang, M. Liu, Y. Yin, F. Tang, H. Xu, X. Liao, Sensors, 18(4), 964 (2018). [39]. F. Shahrouei, S. Elhami, E. Tahanpesar, Spectrochim. Acta A. Mol. Biomol. Spectrosc., 203, 287 (2018). [40]. N. Samadi, S. Narimani, J. Sensor Lett., 14, 530 (2016). | ||
آمار تعداد مشاهده مقاله: 58 تعداد دریافت فایل اصل مقاله: 128 |