تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,619 |
تعداد مشاهده مقاله | 78,312,717 |
تعداد دریافت فایل اصل مقاله | 55,365,329 |
Physicochemical properties of biochar produced from biodegradable domestic solid waste and sugarcane bagasse | ||
International Journal of Recycling Organic Waste in Agriculture | ||
مقاله 10، دوره 12، شماره 3، آذر 2023، صفحه 395-407 اصل مقاله (441.65 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.30486/ijrowa.2022.1954704.1429 | ||
نویسندگان | ||
Nguyen Xuan Loc* 1؛ Tran Duc Thanh1؛ Do Thi My Phuong* 2 | ||
1Department of Environmental Science, College of the Envi-ronment and Natural Resources, Can Tho University, Vietnam | ||
2Department of Environmental Engineering, College of the Environment and Natural Resources, Can Tho University, Vietnam | ||
چکیده | ||
Purpose This research aims to characterize the physical and chemical properties of biochar derived from biodegradable domestic solid waste and sugarcane bagasse, in order to evaluate their possible uses in agronomic and environmental applications. Method Biodegradable domestic solid waste and sugarcane bagasse-based biochar were pyrolyzed at two pyrolysis temperatures (500 and 700 °C). Biochar properties included the determination of several physical and chemical parameters, i.e., pH, electrical conductivity (EC), cation exchange capacity (CEC), carbon content, iodine number, pH point of zero charge and surface morphology. Results Under the investigated conditions, biochar properties were greatly affected by both pyrolysis temperature and feedstock type. The pH, EC, CEC, pHpzc, iodine number and carbon content in biochar increased as the increasing pyrolysis temperature from 500 °C to 700 °C, whilst the opposite trend was found for biochar yield. Between the two biochar, at the same pyrolysis temperature, the sugarcane bagasse biochar possessed lower EC values (118.93 - 126.17 µS/cm) and carbon content (37.42 – 38.8%), but higher CEC values (18.62 - 20.12 cmol/kg) and iodine number (424.04 - 261.34 mg/g) than the biodegradable domestic solid waste biochar. SEM images of sugarcane bagasse biochar exhibited greater porosity than the biodegradable domestic solid waste biochar at both pyrolysis temperatures. Conclusion The results implied that sugarcane bagasse biochar have better potential to be used in applications including the improvement of soil characteristics, the removal of contaminants from aqueous media, and the remediation of contaminated soil. To provide a better evaluation of the biochar’s performance, a further demonstration in soil or water test experiments should be conducted. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Biochar؛ Biodegradable domestic solid waste؛ Physicochemical properties؛ Sugarcane bagasse | ||
مراجع | ||
Ali L, Palamanit A, Techato K, Ullah A, Chowdhury MS, Phoungthong K (2022) Characteristics of biochars derived from the pyrolysis and co-pyrolysis of rubberwood sawdust and sewage sludge for further applications. Sustainability 14:3829. https://doi.org/10.3390/su14073829 Alves BSQ, Zelaya KPS, Colen F, Frazão LA, Napoli A, J.Parikh S, Fernandes LA (2021) Effect of sewage sludge and sugarcane bagasse biochar on soil properties and sugar beet production. Pedosphere 31:572-82. https://doi.org/10.1016/S1002-0160(21)60003-6 Amalina F, Abd Razak AS, Krishnan S, Sulaiman H, Zularisam A, Nasrullah M (2022) Biochar production techniques utilizing biomass waste-derived materials and environmental applications – A review. J Hazard Mater Adv 100134. https://doi.org/10.1016/j.hazadv.2022.100134 Ambaye T, Vaccari M, Van Hullebusch ED, Amrane A, Rtimi S (2021) Mechanism and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. Int J Environ Science Technol 18:3273-3294. https://doi.org/10.1007/s13762-020-03060-w Castiglioni M, Rivoira L, Ingrando I, Del Bubba M, Bruzzoniti MC (2021) Characterization techniques as supporting tools for the interpretation of biochar adsorption efficiency in water treatment: A critical review. Molecules 26(16):5063. https://doi.org/10.3390/molecules26165063 Chen Z, Liu T, Tang J, Zheng Z, Wang H, Shao Q, Chen G, Li Z, Chen Y, Zhu J, Feng T (2018) Characteristics and mechanism of cadmium adsorption from aqueous solution using lotus seedpod-derived biochar at two pyrolytic temperatures. Environ Science Pol Res 25:11854-11866. https://doi.org/10.1007/s11356-018-1460-1 Chun Y, Lee SK, Yoo HY, Kim SW (2021) Recent advancements in biochar production according to feedstock classification, pyrolysis conditions, and applications: A review. Bio Resour 16. https://doi.org/10.15376/BIORES.16.3.CHUN Das SK, Ghosh GK, Avasthe R, Sinha K (2021) Compositional heterogeneity of different biochar: Effect of pyrolysis temperature and feedstocks. J Environ Manag 278:111501. https://doi.org/10.1016/j.jenvman.2020.111501 Dhar SA, Sakib TU, Hilary LN (2020) Effects of pyrolysis temperature on production and physicochemical characterization of biochar derived from coconut fiber biomass through slow pyrolysis process. Biomass Convers Biorefin 1-17. https://doi.org/10.1007/s13399-020-01116-y Do P, Ueda T, Kose R, Nguyen LX, Okayama T, Miyanishi T (2019) Properties and potential use of biochars from residues of two rice varieties, Japanese Koshihikari and Vietnamese IR50404. J Mater Cycles Waste Manage 21:98-106. https://doi.org/10.1007/s10163-018-0768-8 Fan L, Zhou X, Liu Q, Wan Y, Cai J, Chen W, Chen F, Ji J, Cheng L, Luo H (2019) Properties of Eupatorium adenophora Spreng (crofton weed) biochar produced at different pyrolysis temperatures. Environ Eng Sci 36:937-46. https://doi.org/10.1089/ees.2019.0028 Hafshejani LD, Hooshmand A, Naseri AA, Mohammadi AS, Abbasi F, Bhatnagar A (2016) Removal of nitrate from aqueous solution by modified sugarcane bagasse biochar. Ecol Eng 95: 101-111. https://doi.org/10.1016/j.ecoleng.2016.06.035 Hailegnaw NS, Mercl F, Pračke K, Száková J, Tlustoš P (2019) High temperature-produced biochar can be efficient in nitrate loss prevention and carbon sequestration. Geoderma 338:48-55. https://doi.org/10.1016/j.geoderma.2018.11.006 Hassan M, Liu Y, Naidu R, Parikh SJ, Dua J, Qia F, Willett IR (2020) Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Sci Total Environ 744:140714. https://doi.org/10.1016/j.scitotenv.2020.140714 Hossain MZ, Bahar MM, Sarkar B, Donne SW, Ok YS, Palansooriya KN, Kirkham MB, Chowdhury S, Bolan N (2020) Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2:379-420. https://doi.org/10.1007/s42773-020-00065-z Itodo A, Abdulrahman F, Hassan L, Maigandi S, Itodo H (2010) Application of methylene blue and iodine adsorption in the measurement of specific surface area by four acid and salt-treated activated carbons. New York Sci J 3:25-33. http://www.sciencepub.net/newyork Karabay U, Toptas A, Yanik J, Aktas L (2021) Does biochar alleviate salt stress impact on growth of salt-sensitive crop common bean. Commun Soil Sci Plant Anal 52:456-69. https://doi.org/10.1080/00103624.2020.1862146 Karthik A, Hussainy SAH, Rajasekar M (2020) Comprehensive study on biochar and its effect on Soil properties: A review. Int J Curr Microbiol Appl Sci 9:459-477. https://doi.org/10.20546/ijcmas.2020.905.052 Kumar A, Kumar V, Singh B (2021) Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. Int J Biol Macromol 169:564-82. https://doi.org/10.1016/j.ijbiomac.2020.12.175 Li S, Harris S, Anandhi A, Chen G (2019) Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. J Clean Pro 215:890-902. https://doi.org/10.1016/j.jclepro.2019.01.106 Mandal S, Donner E, Vasileiadis S, Skinner W, Smith E, Lombi E (2018) The effect of biochar feedstock, pyrolysis temperature, and application rate on the reduction of ammonia volatilisation from biochar-amended soil. Sci Total Environ 627:942-950. https://doi.org/10.1016/j.scitotenv.2018.01.312 Miranda NT, Motta IL, Maciel Filho R, Maciel MRW (2021) Sugarcane bagasse pyrolysis: A review of operating conditions and products properties. Renew Sust Energ Rev 149:111394. https://doi.org/10.1016/j.rser.2021.111394 Nanda S, Dalai AK, Berruti F, Kozinski JA (2016) Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valori 7:201-235. https://doi.org/10.1007/s12649-015-9459-z Nguyen LX, Do PTM, Nguyen CH, Kose R, Okayama T, Pham TN, Nguyen PD, Miyanishi T (2018) Properties of biochars prepared from local biomass in the Mekong Delta, Vietnam. Bio Resour 13:7325-7344. https://doi.org/10.15376/biores.13.4.7325-7344 Oni BA, Oziegbe O, Olawole OO (2019) Significance of biochar application to the environment and economy. Ann Agric Sci 64:222-236. https://doi.org/10.1016/j.aoas.2019.12.006 Pradhan S, Abdelaal AH, Mroue, K, Al-Ansari T, Mackey HR, McKay G (2020) Biochar from vegetable wastes: Agro-environmental characterization. Biochar 2(4):439-453. https://doi.org/10.1007/s42773-020-00069-9 Raul C, Prakash S, Lenka S, Bharti V (2021) Sugarcane bagasse biochar: A suitable amendment for inland saline pond water productivity. J Environ Biol 42:1264-1273. http://doi.org/10.22438/jeb/42/5/MRN-1702 Saleh ME, Hedia RM (2018) Mg-modified sugarcane bagasse biochar for dual removal of ammonium and phosphate ions from aqueous solutions. Alex Sci Exch J 39:74-91. http://doi.org/10.21608/ASEJAIQJSAE.2018.5753 Shetty R, Prakash NB (2020) Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Sci Rep 10:1-10. https://doi.org/10.1038/s41598-020-69262-x Singh B, Dolk MM, Shen Q, Camps-Arbestain M (2017) Biochar pH, electrical conductivity and liming potential. In: Singh B, Camps-Arbestain M, Lehmann J (eds) Biochar: A guide to analytical methods. CRC Press, pp 23-38. https://doi.org/10.1071/9781486305100 Taherymoosavi S, Verheyen V, Munroe P, Joseph S, Reynolds A (2017) Characterization of organic compounds in biochars derived from municipal solid waste. Waste Manag 67:131-42. https://doi.org/10.1016/j.wasman.2017.05.052 Tan H, Lee CT, Ong PY, Wong KY, Bong CPC, Li C, Gao Y (2021) A review on the comparison between slow pyrolysis and fast pyrolysis on the quality of lignocellulosic and lignin-based biochar. IOP Conf Ser: Mater Sci Eng 1051: 012075. https://doi.org/10.1088/1757-899X/1051/1/012075 Tappi J (2002) Acid-insoluble lignin in wood and pulp, Test method T 222 om-02. TAPPI J 1:1-5 Tomczyk A, Sokołowska Z, Boguta P (2020) Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol 19:191-215. https://doi.org/10.1007/s11157-020-09523-3 Usman AR, Abduljabbar A, Vithanage M, Ok YS, Ahmad M, Ahmad M, Elfaki J, Abdulazeem SS, I.Al-Wabe M (2015) Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry. J Anal Appl Pyrolysis 115:392-400. https://doi.org/10.1016/j.jaap.2015.08.016 Vijay V, Shreedhar S, Adlak K, Payyanad S, Sreedharan V, Gopi G, Sophia van der Voort T, Malarvizhi P, Yi S, Gebert J, Aravind P (2021) Review of large-scale biochar field-trials for soil amendment and the observed influences on crop yield variations. Front Energy Res 9:710766. https://doi.org/103389/fenrg.2021.710766 Vimal V, Patel M, Mohan D (2019) Aqueous carbofuran removal using slow pyrolyzed sugarcane bagasse biochar: Equilibrium and fixed-bed studies. RSC advances 9:26338-26350. https://doi.org/10.1039/C9RA01628G Wang K, Peng N, Lu G, Dang Z (2020) Effects of pyrolysis temperature nd holding time on physicochemical properties of swine-manure-derived biochar. Waste Biomass Valori 11:613-24. https://doi.org/0.177/0734242X15615698 Wei S, Zhu M, an X, Song J, Peng P, Li K, Jia W, Song H (2019) Influence of pyroysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge. Chemosphere 218:624-31. https://doi.org/1.1016/j.chemosphere.2018.11.177 Zhang X, Zhang P, Yuan X, Li Y, Han L (2020) Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar. Bioresour Technol 296:122318. https://doi.org/101016/j.biortech.2019.122318 | ||
آمار تعداد مشاهده مقاله: 282 تعداد دریافت فایل اصل مقاله: 205 |