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ABSTRACT:  

Networks are all around us and can be in the Euclidean space of concrete objects such as power grids, the Internet, 

highways or subway systems, and neural networks, or in an abstractly defined space, such as networks of familiarity or 

cooperation between people. To express the general properties of such networks, their modeling is in the form of graphs 

that show the nodes as oscillators (the dynamic unit) and the edges as the existence of interaction between oscillators 

We applied the Kuramato model to networks of oscillators connected in a small-world network pattern and considered 

the influence of oscillators on each other as conformist and contrarian. Based on this, we examined the synchronization 

in the network. We showed that if the number of contrarian oscillators in the network reaches a certain value, it will 

cause more of the network, which is due to the weakening of defects created in compatible oscillators. 
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1. INTRODUCTION 

     Networks are all around us and can be in the 

Euclidean space of concrete objects such as power grids, 

the Internet, highways or subway systems, and neural 

networks, or in an abstractly defined space, such as 

networks of familiarity or cooperation between people 

[1]. To express the general properties of such networks, 

their modeling is in the form of graphs that show the 

nodes as oscillators (the dynamic unit) and the edges as 

the existence of interaction between oscillators [2,3]. In 

most real networks, despite their large size, there is often 

a relatively short path between any two nodes. This 

feature is known as the small world property, which 

consists of a regular network and is rewired with a 

probability p of edges, which is 𝑝 from 0.005 to 0.05, 

and has a large clustering coefficient and a small average 

path length, and between the regular network (𝑝 = 0) 

and the random network (𝑝 = 1) is located [4]. 

      One of the main topics of network dynamics is 

synchronization. Synchronization can be seen in many 

different contexts. Including in engineering where 

synchronization or asynchrony is important, such as 

wireless communication networks [5] and electric grid 

networks [6]. Synchronization is the synchronization of 

a set of phase oscillators that interact weakly with each 

other. 

      The Kuramoto model analyzes a model of phase 

oscillators with natural frequency and coupled, whose 

interaction is a sinusoidal function of the phase 

difference [7,8]. This model is simple enough to show 

all kinds of synchronization patterns, and it is 

compatible with different conditions, and it also 

provides an acceptable description of synchronization. 

In order for the Kuramoto model to be closer to real 

networks, two couplings can be assumed: if the coupling 

of two oscillators is positive, the interaction is 

convergent (in-phase) and if it is negative, the 

interaction is not convergent and is anti-phase [9- 11]. 

Hong and Strugatz considered a simple model for the 

network in which oscillators are divided into conformist 

and contrarian groups [12, 13]. In this model, 

conformists try to keep up with the majority of the 

population, so they have positive mating. While the 

contrarian oscillators tend to move in the opposite 

direction of the population and have negative coupling. 

In this paper, we applied the Kuramoto model to two 

groups of conformists and contrarians of phase 

oscillators for the small world network and organized the 
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paper as follows: In section II, we define the model and 

the numerical methods of quantifying the 

synchronization. Section III represents the results and 

discussion and section IV is devoted to the concluding 

remarks. 

 
2. MODEL AND METHOD 

      In this work, we develop the Kuramato model for the 

small-world network assuming that there are two groups 

of oscillators, conformists and contrarians, in the 

network: 

             (1) 

  𝑖 = 1, … , 𝑁 
 

      Where  𝜃𝑖  denotes the phase of the oscillator sitting 

at node 𝑖, 𝜔0 is the intrinsic frequency of the oscillators 

and considered equal for all of them. 𝑎𝑖𝑗  denotes the 

elements of the adjacency matrix (i.e. 𝑎𝑖𝑗 = 1 if 𝑖 and 𝑗 

are connected and 𝑎𝑖𝑗 = 0 otherwise) and 𝑘𝑖 is the 

degree of node 𝑖.  𝜆𝑖
𝑠, where 𝑠 = conformist; contrarian, 

is the coupling constant, which is positive for the 

conformist and negative for the contrarians. with assume 

𝑄 > 0 , 𝜆𝑖
𝑓

> 0, 𝜆𝑡 = −𝑄𝜆𝑓 . Rescaling the time variable 

as 𝜏 = 𝜆𝑖
𝑓

𝑡  so in the stationary state we define the long 

time averaged order parameter as:  

 

     In which 𝜏𝑠 is the time of reaching a stationary state.  

 

       The findings of Hong and Strugats showed for this 

model [13], the system reaches one of four stable states: 

1) Incoherent state: the total order parameter becomes 

zero. 2) 𝜋 state: the phase distribution of conformist and 

contrarian oscillators is exactly equal to 𝜋, and 

conformist and contrarian oscillators are completely 

synchronized. 3) Soft π state: the order parameter of 

conformists and contrarians is less than unity (𝑟𝑡 , 𝑟𝑓 <

1), but their difference is 𝜋. 4) Traveling wave state: 

conformist oscillators will have complete 

synchronization and contrarian oscillators will have 

partial synchronization (𝑟𝑓 = 1, 𝑟𝑡 < 1), the peaks of 

the phase distribution have an angle less than 𝜋. 

 

3. RESULTS AND DISCUSSION 

       We considered the number of oscillators in the grid 

to be 1000 and assumed the average degree of each node 

to be 10 (similar to real models) in small world and 

random networks. We selected the edges undirected and 

denoted the ratio of contrarian and conformist oscillators 

as 𝑝. The initial random phase of the oscillators is in 
[0,2𝜋]  range and the intrinsic frequency distribution of 

the oscillators follows the Lorentz distribution function. 

The time to reach the steady state in the small world 

network (Strogats network) with the probability of 

rewiring (0.03) more than the random network (3500) 

is about 6 × 105time steps. In the following, we express 

the obtained results. 

 

 
(a) (b) 

 
Fig. 1.  (Color online) Stationary order parameters verses fraction of contrarians for the conformist-contrarian model 

for Q = 0.5, Q = 1 and Q = 1.5 for (a) small world (with the probability of rewiring 0.03) and (b) random (with the 

probability of rewiring 0) networks of N = 1000 oscillators and mean degree 〈k〉 = 10. The error bars indicate the 

standard error of mean (SEM). 

𝑑𝜃𝑖
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      In Fig. 1a, the order parameter has a maximum at 

𝑝 = 0.04, and it shows that the order parameter of the 

network increases with the increase of contrarian nodes 

up to about 4% and the synchronization in the network 

increases. Then, with the increase of contrarian nodes, 

the synchronization decreases and finally reaches zero. 

For comparison, we examined the random network with 

the same characteristics of the small world network and 

drew a diagram in Fig. 1b. It can be seen that with the 

increase in the percentage of contrarian oscillators, the 

maximum order parameter remains at 𝑟 = 1and then 

becomes zero with a smaller slope compared to the small 

world network. It can be seen in these graphs that it does 

not depend on the coupling strength like the small world 

network, so we will continue the graphs related to 𝑄 =
0.5. 

 

 

 

 

 

 
(a) (b) (c) 

 
Fig. 2. (Color online) correlation matrix  for (a) p = 0.03, (b)p = 0.0 and (c)p = 0.09 in a small world network of 

N = 1000 oscillators, mean degree 〈k〉 = 10 and Q = 0.5. p is the fraction of contrarians to conformists. 

 

     Fig. 2. correlation matrix is drawn for the point before 

the maximum, and after the maximum in Fig. 1a. At the 

beginning, the network is in a stable state and has 

network defects, where there are no inconsistent nodes 

[14]. By increasing the number of contrarian oscillators, 

network errors are reduced and the network becomes 

more synchronized. After reaching the maximum, the 

open defect until it disappears at ∽ 𝑝 = 0. 1and the 

network becomes incoherent. 

   

(a) (b) (c) 

Fig. 3. (Color online) the order parameter vector of conformist and contrarian oscillators  for (a) p = 0.03, (b)p = 0.0 

and (c)p = 0.09 in a small world network of N = 1000 oscillators, mean degree 〈k〉 = 10 and Q = 0.5. p is the 

fraction of contrarians to conformists. 

 

      For detailed observation in Fig. 3, the order 

parameter vector of conformist and contrarian oscillators 

has been drawn for different ratios of contrarian after the 

stability of the network in the polar plane so that the 

phase difference of the design of the two groups of 

oscillators can be seen better. 𝑄 = 0.5 and random 

initial conditions are performed independently. The 

random network 𝑝 = 0 is a structural system less than 

one, which is due to the existence of network defects in 

small world networks [6]. This is while the small world 

network depends on the initial phase of the oscillators 

and its value is between 0 and 1 and in most cases less 

than 1. 

      To ensure the results, the results were analyzed for 

10 small world networks with the same number of 
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vertices, degree of nodes and rewiring, but different 

adjacency matrices, the same results were obtained. 

      As a result, when enemies randomly enter the 

network, some of them will be located next to the 

network defects. The effect of these new factors on the 

oscillators within the defects, which are out of phase 

with the other oscillators in their group, gives them more 

freedom to deviate from their previous anti-phase state, 

thereby weakening them. For a given number of these 

counters, maximum freedom is given to errors, 

maximizing synchronization. 

 

4. CONCLUSION 

      In summary, we have numerically investigated the 

Kuramoto model for a number of oscillators that include 

both conformist and contrarian groups located in the 

Strogatz small-world and Random networks.In random 

networks, the conformist and contrarian model is in the 

stable state of the network in 𝜋 𝑠𝑡𝑎𝑡𝑒, and it goes to 

blurred 𝜋 state with the increase of incompatibilities. 

While for the small world (SW) network, the network is 

in a blurred 𝜋 state state and remains in this state as 

mismatches increase. traveling wave state does not occur 

for any of the networks. In the SW network, by 

increasing the number of contrarians to an optimal level, 

the synchronization increases and then decreases by 

increasing their number in the network. The observed 

increase in synchrony is due to the interaction of 

contrarian oscillators with network defects and their 

attenuation. 
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