- [1] Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express, 27(3), pp. 2036–2043, 2019. https://doi.org/10.1364/OE.27.002036.
- [2] Jiang, T. Wang, Z. Sun, J. Chen, X. Zhang, P. Lin, P. Chen, and Y. Zhao, “Partially coherent seeding of supercontinuum generation in picosecond regime,” Opt. Laser Technol., 120, 105752 (5pp), 2019. https://doi.org/10.1016/j.optlastec.2019.105752.
- [3] Poudel, and C. F. Kaminski, “Supercontinuum radiation in fluorescence microscopy and biomedical imaging applications,” J. Opt. Soc. Am. B, 36, pp. A139–A153, 2019. https://doi.org/10.1364/JOSAB.36.00A139.
- [4] Bazargani, B. Gharekhanlou, and M. Banihashemi, “Improvement in the Transmission Coefficient of Photonic Crystal Power Splitter using Selective Optofluidic Infiltration,” Majlesi Journal of Electrical Engineering, 16(3), 2022, pp. 35–40. https://doi.org/10.30486/mjee.2022.696504.
- [5] Parandin, and M. M. Karkhanehchi, “Low Size All Optical XOR and NOT Logic Gates Based on Two-Dimensional Photonic Crystals,” Majlesi Journal of Electrical Engineering, 13(2), pp 1–5, 2019. http://mjee.iaumajlesi.ac.ir/index/index.php/ee/article/view/2703.
- [6] Borondics, M. Jossent, C. Sandt, L. Lavoute, D. Gaponov, A. Hideur, P. Dumas, and S. Février, “Supercontinuum-based Fourier transform infrared spectromicroscopy,” Optica, 5, pp. 378–381, 2018. https://doi.org/10.1364/OPTICA.5.000378.
- [7] Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express, 20(5), pp. 4887–4892, 2012. https://doi.org/10.1364/OE.20.004887.
- [8] Seifouri, S. Olyaee, and M. Dekamin, “A New Design of As2Se3 Chalcogenide Glass Photonic Crystal Fiber with Ultra-Flattened Dispersion in Mid-Infrared,” Majlesi Journal of Electrical Engineering, 8(4), pp. 9–15, 2014. http://mjee.iaumajlesi.ac.ir/index/index.php/ee/article/view/1240.
- [9] N. Thi, D. H. Trong, and L. C. Van, “Supercontinuum generation in ultra-flattened near-zero dispersion PCF with C7H8 infiltration,” Opt. Quantum Electron., 55, 93, 2023. https://doi.org/10.1007/s11082-022-04351-x.
- C. Van, T. N. Thi, D. H. Trong, B. T. L. Tran, N. V. T. Minh, T. D. Van, T. L. Canh, Q. H. Dinh, and K. D. Quoc, “Comparison of supercontinuum spectrum generating by hollow core PCFs filled with nitrobenzene with different lattice types,” Opt. Quantum Electron., 54(5), 300 (17pp), 2022. https://doi.org/10.1007/s11082-022-03667-y.
- N. Thi, D. H. Trong, B. T. L. Tran, T. D. Van, L. C. Van, “Optimization of optical properties of toluene-core photonic crystal fibers with circle lattice for supercontinuum generation,” J. Opt., 2022. https://doi.org/10.1007/s12596-021-00802-y.
- T. L. Tran, T. N. Thi, N. V. T. Minh, T. L. Canh, M. L. Van, V. C. Long, K. D. Xuan, and L. C. Van, “Analysis of dispersion characteristics of solid-core PCFs with different types of lattice in the claddings, infiltrated with ethanol,” Photonics Lett. Poland, 12(4), pp. 106–108, 2020. https://doi.org/10.4302/plp.v12i4.1054.
- Ghanbari, A. Kashaninia, A. Sadr, and H. Saghaei, “Supercontinuum generation for optical coherence tomography using magnesium fluoride photonic crystal fiber,” Optik, 140, pp. 545–554, 2017. https://doi.org/10.1016/j.ijleo.2017.04.099.
- C. Van, H. V. Le, N. D. Nguyen, N. V. T. Minh, Q, H. Dinh, V. T. Hoang, T. N. Thi, and B. C. Van, “Modelling of lead-bismuth gallate glass ultra-flatted normal dispersion photonic crystal fiber infiltrated with tetrachloroethylene for high coherence mid-infrared supercontinuum generation,” Laser Phys., 32, 055102 (12pp), 2022. https://doi.org/10.1088/1555-6611/ac599b.
- Yang, W. Bi, X. Li, M. Liao, W. Gao, Y. Ohishi, Y. Fang, and Y. Li, “Ultrabroadband supercontinuum generation through filamentation in a lead fluoride crystal,” J. of the Opt. Soc. Am. B, 36(2), pp. A1-A7, 2019. https://doi.org/10.1364/JOSAB.36.0000A1
- Li, L. Wang, M. Liao, L. Zhang, W. Bi, T. Xue, Y. Liu, R. Zhang, and Y. Ohishi, “Suspended-core fluoride fiber for broadband supercontinuum generation,” Opt. Mater., 96, 109281 (5pp), 2019. https://doi.org/10.1016/j.optmat.2019.109281.
- A. H. Ali, M. F. O. Hameed, and S. S. A. Obayya, “Ultrabroadband supercontinuum generation through photonic crystal fiber ưith As2S3 chalcogenide core,” J. Lightwave Technol., 34(23), pp. 5423–5430, 2016. https://doi.org/10.1109/JLT.2016.2615044.
- Vyas, T. Tanabe, M. Tiwari, and G. Singh, “Chalcogenide photonic crystal fiber for ultraflat mid-infrared supercontinuum generation,” Chin. Opt. Lett., 14(12), 123201, 2016. https://doi.org/10.3788/COL201614.123201.
- C. Van, T. N. Thi, B. T. L. Tran, D. H. Trong, N. V. T. Minh, H. V. Le, and V. T. Hoang, “Multi-octave supercontinuum generation in As2Se3 chalcogenide photonic crystal fiber,” Photon. Nanostruct. Fundam. Appl., 48, 100986 (10pp), 2022. https://doi.org/10.1016/j.photonics.2021.100986.
- Medjouri, D. Abed, and Z. Becer, “Numerical investigation of a broadband coherent supercontinuum generation in Ga8Sb32S60 chalcogenide photonic crystal fiber with all-normal dispersion,” Opto-Electronics Review, 27(1), pp. 1–9, 2019. https://doi.org/10.1016/j.opelre.2019.01.003.
- Zou, and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids, 162(1–2), pp. 68–80, 1993. https://doi.org/10.1016/0022-3093(93)90742-G.
- Yang, B. Zhang, K. Yin, J. Yao, G. Liu, and J. Hou, “0.6-3.2 μm supercontinuum generation in a step-index germania-core fiber using a 4.4 kW peak-power pump laser,” Opt. Express, 24(12), pp. 12600–12606, 2016. https://doi.org/10.1364/OE.24.012600.
- Jain, R. Sidharthan, P. M. Moselund, S. Yoo, D. Ho, and O. Bang, “Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber,” Opt. Express, 24(23), pp. 26667–26677, 2016. https://doi.org/10.1364/OE.24.026667.
- Jain, R. Sidharthan, G. Woyessa, P. M. Moselund, P. Bowen, S. Yoo, and O. Bang, “Scaling power, bandwidth, and efficiency of mid-infrared supercontinuum source based on a GeO2-doped silica fiber,” J. Opt. Soc. Am. B, 36(2), pp. A86-A92, 2019. https://doi.org/10.1364/JOSAB.36.000A86.
- Chen, M. Liao, W. Bi, F. Yu, T. Wang, W. Gao, and L. Hu, “Coherent Supercontinuum Generation in Step-Index Heavily Ge-Doped Silica Fibers With All Normal Dispersion”, IEEE Photon. J., 14(4), 2022. DOI: 10.1109/JPHOT.2022.3177945.
- Jain, R. Sidharthan, P. M.Moselund, S. Yoo, D. Ho, and O. Bang, “High power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber,” Fiber Lasers XIV: Technology and Systems, 10083, 1008318 (4pp), 2017. https://doi.org/10.1117/12.2251648.
- H. Reddy, A. V. Kir’yanov, A. Dhar, S. Das, D. Dutta, M. Pal, Y. O. Barmenkov, J. A. Minguella-Gallardo, S. K. Bhadra, and M. C. Paul, “Fabrication of ultra-high numerical aperture GeO2-doped fiber and its use for broadband supercontinuum generation,” Appl. Opt., 56(33), pp. 9315–9324, 2017. https://doi.org/10.1364/AO.56.009315.
- H. Thai, T. T. Pham, Md. A. Hossain, and N. H. Hai, “A novel design of highly nonlinear golden spiral Ge-doped core photonic crystal fiber for supercontinum light sources application,” International Conference on Advanced Technologies for Communications (ATC 2014), pp. 681–685, 2014. https://doi.org/10.1109/atc.2014.7043474.
- A. Kamynin, A. E. Bednyakova, M. P. Fedoruk, I. A. Volkov, K. N. Nishchev, and A. S. Kurkov, “Supercontinuum generation beyond 2 µm in GeO2 fiber: comparison of nano- and femtosecond pumping,” Laser Phys. Lett., 12(6), 065101 (3pp), 2015. https://doi.org/10.088/1612-2011/12/6/065101.
- Zhang, E. J. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express, 21(20), pp. 23261–23271, 2013. https://doi.org/10.1364/OE.21.023261.
- M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Y. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett., 29(22), pp. 2596–2598, 2004. https://doi.org/10.1364/OL.29.002596.
- M. Dianov, and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol., 23(11), pp. 3500–3508, 2005. https://doi.org/10.1109/JLT.2005.855867.
- N. Gur’yanov, M. Yu. Salganskii, V. F. Khopin, M. M. Bubnov, and M. E. Likhachev, “GeO2-rich low-loss single-mode optical fibers,” Inorg. Mater., 44(3), pp. 278–284, 2008. https://doi.org/10.1134/S0020168508030126.
- Jain, R. Sidharthan, P. M. Moselund, S. Yoo, D. Ho, O. Bang, “High power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber,” Proceedings Vol. 10083, Fiber Lasers XIV: Technology and Systems 1008318 2017. https://doi.org/10.1117/12.2251648.
- Chen, H. Wei, T. Liu, X. Zhou, P. Yan, Z. Chen, S. Chen, J. Li, J. Hou, Q. Lu, “All-Fiber-Integrated High-Power Supercontinuum Sources Based on Multi-Core Photonic Crystal Fibers,” IEEE Journal of Selected Topics in Quantum Electronics 20 (5) pp. 64-71 2014. DOI: 10.1109/JPHOT.2011.2175211.
- Yang, J., Wang, Y., Fang, Y., Geng, W., Zhao, W., Bao, C., Ren, Y., Wang, Z., Liu, Y., Pan, Z.; et al., “Over-Two-Octave Supercontinuum Generation of Light-Carrying Orbital Angular Momentum in Germania Doped Ring-Core Fiber,” Sensors 22 6699 2022. https://doi.org/10.3390/s22176699.
- Cascante-Vinda, S. Torres-Peiró, A. Diez, M.V. Andrés, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl Phys B 98 pp. 371–376 2010. DOI 10.1007/s00340-009-3723-5.19.
- H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am., 55(10), pp. 1205−1208, 1965. https://doi.org/10.1364/JOSA.55.001205.
- W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt., 23(24), pp. 4486−4493, 1984. https://doi.org/10.1364/AO.23.004486.
- S. Lee, C. G. Lee, F. Bahloul, S. Kim, and K. Oh, “Simultaneously achieving a large negative dispersion and a high birefringence over Er and Tm dual gain bands in a square lattice photonic crystal fiber,” J. Lightwave Technol., 37(4), pp. 1254−1263, 2019. https://doi.org/10.1109/JLT.2019.2891756.
- Liao, Z. Wang, T. Huang, Q. Wei, and D. Li, “Design of step-index-microstructured hybrid fiber for coherent supercontinuum generation,” Optik, 243, 167393, 2021. https://doi.org/10.1016/j.ijleo.2021.167393.
- A. Hossain, Y. Namihira, M. A. Islam, and Y. Hirako, “Polarization maintaining highly nonlinear photonic crystal fiber for supercontinuum generation at 1.55 µm,” Opt. Laser Technol., 44(5), pp. 1261−1269, 2012. https://doi.org/10.1016/j.optlastec.2011.12.052.
- K. Prajapati, V. K. Srivastav, V. Singh, and J. P. Saini, “Effect of germanium doping on the performance of silica based photonic crystal fiber,” Optik, 155, pp. 149−156, 2018. https://doi.org/10.1016/j.ijleo.2017.10.178.
- A. Nair, I. S. Amiri, C. S. Boopathi, S. Karthikumar, M. Jayaraju, and P. Yupapina, “Numerical investigation of co-doped microstructured fiber with two zero dispersion wavelengths,” Results in Physics, 10, pp. 766−771, 2018. https://doi.org/10.1016/j.rinp.2018.07.032.
- P. Agrawal, “Nonlinear Fiber Optics (5th edition),” Academic Press, Elsevier, 2013. https://doi.org/10.1016/C2011-0-00045-5.
|