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  INTRODUCTION 
In a growing number of countries, genomic selection has 
become a routine method for predicting genomic breeding 
values (GEBVs) of selection candidates (Khansefid et al. 
2020; Salek-Ardestani et al. 2021) due to its positive im-
pact on genetic gain. However, different genomic predic-
tion methods may have different predictive abilities, which 
are associated with factors such as the genetic architecture 

of traits and reference population size. Previous studies 
suggested that tracing selection footprints on the genome of 
two phenotypically divergent populations or sub-
populations can help to detect genomic regions or QTLs 
related to traits that were under selection pressure (Chang et 
al. 2018; Chang et al. 2019). Specifically, signatures of 
selection tests can be employed for QTL mapping of oli-
gogenic traits under selection (Walsh, 2021). Population 
fixation index (FST) as one of the most common cross-

 

We investigated the prediction accuracy and bias of single-step genomic BLUP (ssGBLUP) with or without 
weights for single-nucleotide polymorphisms (SNPs). The SNP weights were calculated using population 
Fixation Index (WssGBLUPFST) and a nonlinear method called nonlinearA (WssGBLUPNLA). The results of 
these two weighted methods were compared with a non-weighted method. The individuals of the reference 
population were sorted based on their estimated breeding values and the top 5% and bottom 5% of indi-
viduals based on their estimated breeding values (EBVs) were considered as subpopulations 1 and 2. The 
FST values for all SNPs between subpopulations 1 and 2 were scaled between zero and one and used as 
weights. The prediction accuracy and bias of predictions in WssGBLUPFST, WssGBLUPNLA and ssGBLUP 
methods were compared considering varying the numbers of quantitative trait locus (QTL) (10, 50 and 
500), heritability (0.1 and 0.4) and size of reference population (1500, 5000 and 12500). In 10 and 50 QTL, 
both weighting methods outperformed regular ssGBLUP and with simulation, WssGBLUPFST outperformed 
WssGBLUPNLA. By increasing the number of QTL to 500 QTL, the WssGBLUPFST was no longer superior 
to WssGBLUPNLA and ssGBLUP. Our results suggest usefulness of weighting genomic relationship matrix 
by using FST, especially when the trait is affected by a few numbers of QTL. The prediction accuracy of 
WssGBLUP methods is expected to increase by identifying and giving appropriate weight to QTL with 
major effects. Combining different test statistics into a single framework such as decomposition of multiple 
signals may help reduce false positives and pinpoint the QTL position with more precision.  
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population tests has been widely used to detect selection 
signatures in animals (Ghoreishifar et al. 2020a; Salek-
Ardestani et al. 2020; Ghoreishifar et al. 2021). Recently, 
Chang et al. (2019) proposed a weighting genomic relation-
ship matrix based on FST (hereinafter call WGBLUPFST). In 
a simulated study, they demonstrated that WGBLUPFST 
could improve the accuracy of genomic prediction through 
using the FST values calculated from two subpopulations 
(i.e., top 5% and bottom 5% of individuals in the popula-
tion based on their EBVs).  

However, they did not compare their results with other 
weighting strategies. Additionally, the possible effect of 
heritability, reference population size, and distributions of 
QTL on predictive abilities were not considered in their 
study. Thus, this study aimed to investigate the perform-
ance of ssGBLUP and weighting genomic relationship ma-
trix using FST and nonlinearA methods (hereinafter call 
WssGBLUPNLA) in different scenarios (i.e., different 
heritability levels, reference population sizes and numbers 
of QTL).  

 

  MATERIALS AND METHODS 
Simulation of populations 
The QMSim (Sargolzaei and Schenkel, 2009) software used 
to simulate the genomic data. As shown in Table 1, data 
was generated in two steps. In the first step, a historical 
population with 2500 male and 2500 female animals was 
simulated and following 1000 generations of random mat-
ing, population size decreased linearly to 120 individuals to 
induce genome-wide linkage disequilibrium between SNP. 
Then, during 100 additional generations, the population size 
was expanded to 20000 animals, of which 19800 were fe-
males and 200 were males in the last historical generation. 
Mating pairs were random in the historical populations with 
non-overlapping generations, no selection and no migra-
tion. In the second step, of the animals in the last historical 
population, 12500 females and 30 males were randomly 
selected as founders to generate 15 overlapping generations 
(i.e., generations 1 to 15).  

Each random mating of the selected parents with high 
EBV produced one progeny with 50% probability of being 
female or male. Sire and dam replacement rate were 0.2 and 
0.5 per generation, respectively, and the effective popula-
tion size was ~120. 
 
Reference and validation populations 
Generations 12-14 were included in the genomic prediction 
analyses. For these individuals (n=37500) phenotypes and 
pedigree records were also available. The animals in gen-
eration 14 (n=12500) and 1000 randomly selected animals 
from generation 15 were considered as reference and vali-
dation populations, respectively (Table 1).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 Simulation parameters of population structure and genomic 
data 

 Historical population (HP) 
5000 (0) 120 (1000) 20000 

(1100) 
Size of HP (number of generations) 

200 (19800) Number of males (female) in the last 
Generation of HP  

Recent (founder) population  

Founder male (female) selected from 
HP 

30 (12500) 

Number of generations 15 

Replacement rate for sire (dam) 0.5 (0.2) 

Number of animals with pedigree 
(generation) 

50000 (12-15) 

Number of animals with phenotype 
(generation) 

37500 (12-14) 

Effective population size ~120 

Number of replicates 5 

1500 (14) 
Number of reference population 
(generation) 

5000 (14) 

12500 (14) 

Number of validation population 
(generation) 

1000 (15) 

Phenotypic variance 1.0 

Simulated genome properties  

Total genome length (unit) 23.9 (Morgans) 

Number of chromosomes 29 

Similar to BovineSNP50k 
Chip 

Chromosome’s length 

Similar to BovineSNP50k 
Chip 

Number of markers per chromosome 

Marker distribution Evenly spaced 

10 

Total Number of QTL 50 

500 

2.5 × 10-5 (recurrent 
mutation) 

Marker and QTL mutation rate (type) 

QTL effects (shape parameter) gamma distribution (0.4) 

 
Three different numbers of individuals from generation 

14 (1500, 5000 and 12500) were used in the reference 
population in different scenarios. The selection of animals 
to be in the reference and validation populations was at 
random but the same individuals were used in different 
ssGBLUP methods. For the validation population in all 
scenarios, the phenotypes were masked before genomic 
prediction analyses. 
 

Genome and QTL simulation 
The total length of the simulated genome was 23.19 Mor-
gans which comprised of 29 chromosomes with equal 
length to the bovine autosomes (Lourenco et al. 2017). 
SNPs were uniformly distributed along the autosomes. The 
number of simulated SNPs was 54K, of which ~42.5K re-
mained after quality control for minor allele frequency 
(MAF) < 0.05. Along with SNPs, bi-allelic QTL with MAF 
> 0.05 were randomly distributed along the simulated ge-
nome. 
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Six traits with different genetic architecture including dif-
ferent heritability (0.1 and 0.4) and numbers of QTL (10, 50 
and 500) were simulated. QTL effects were sampled from a 
gamma distribution with a shape parameter of 0.4. Recur-
rent mutations for SNP and QTL were allowed with prob-
ability of 2.5 × 10-5. The simulated phenotype for these 
traits comprised of the sum of an overall mean, the true 
breeding value (TBV) and a random residual. Each scenario 
was replicated five times. 
 
Model and data analyses 
The animal model below (Eq. 1) was used for genomic pre-
diction: 
 
y= Xb + Zu + e         Eq. 1 
 
Where:  
y: n × 1 vector of observations.  
b: n × 1 vector of fixed effects including overall mean.  
u: q × 1 vector of random additive genetic effect driven 
from a normal distribution u ~ N(0, Hσu

2). 
e: n × 1 vector of random residuals driven from a normal 
distribution e ~ N(0, Iσe

2), respectively.  
X and Z: n × p and n × q design matrices which link the 
observations to fixed effects and random additive genetic 
effects, respectively. 
 

Genomic prediction was performed using ssGBLUP and 
WssGBLUP. As described by Aguilar et al. (2010), in the 
mixed model equations for ssGBLUP, the pedigree-based 
relationship matrix (A) is replaced by a hybrid matrix called 
H matrix which allows to combine SNP and pedigree in-
formation. This matrix is constructed as follows: 

 
 

     Eq. 2 

 

Where:  
G-1: inverse of genomic relationship matrix.  
A-1 and A22

-1: inverse of pedigree-based relationship matrix 
for all individuals in the pedigree and for the genotyped 
individuals, respectively.  
τ and ω: scaling factors, both of which were set equal to 
one, as the default values in AIREMLF90 program.  
α and β: blending factor to avoid singularity programs, 
which were set equal to 0.95 and 0.05, respectively.  
 
In the equation above, G is constructed as follows: 
 
G= MDM′ / 2Ʃpj (1–pj)   Eq. 3 
 
 

Where:  

allele frequency for jth marker. 
trix with elements 

ntaining SNP weights with dimen-

ance for all SNPs, and 
th

ssGBLUP nonlinearA method 
ved based on 

pj: minor 
M: allele frequency adjusted genotype ma
including 0 – 2pj, 1 – 2pj and 2 – 2pj for genotypes AA, AB 
and BB, respectively.  
D: diagonal matrix co
sions equal to the number of SNPs.  

The ssGBLUP assumes equal vari
erefore D is an identity (I) matrix.  

 
W
For WssGBLUPNLA, SNPs weights were deri
(VanRaden, 2008) formulae: 
  

using an iterative method proposed by 

Wang et al. (2012)

) Set Dt= I and Gt= MDM′ / 2Ʃpj (1–pj) 
ach 

 as follows: 
 

A
B) Compute GEBV using ssGBLUP appro

C) Compute SNP effects as  

D) Calculate SNP weights using NonlinearA: 

 

E) Normalize Dt + 1

p B with a new G matrix: 

ST  
eights were derived based on 

UP model, H 

 
F) Return back to ste
Gt + 1= MD(t+1)M′ / 2Ʃpj (1–pj) 
  
WssGBLUP based on F
For WssGBLUPFST, SNP w
population fixation index (FST) (Weir and Cockerham, 
1984) as suggested by Chang et al. (2019). First, the breed-
ing values (EBV) of the individuals in the reference popula-
tion were estimated by BLUP animal model.  
This model is similar to Eq. 1 but in the BL
was replaced by A, which is a pedigree numerator relation-
ship matrix. Then, we assigned individuals in the reference 
population into three subpopulations including the bottom 
5%, the middle 90% and the top 5% based on their EBV. 
The individuals with top and bottom 5% EBV were selected 
to calculate FST in PLINK v1.9 (Chang et al. 2015). Then, 
the FST values for all SNPs were scaled between 0 and 1 
according to the maximum ( ) and minimum ( ) 

FST (Eq. 4), and then used as weights (D) to calcul e 
weighted G (see Eq. 3). 

at

  Eq. 4 

 
ccuracy and bias of genomic predictions  

f the valida-
A
The correlation between GEBVs and TBVs o
tion animals were calculated and the average correlation 
over five replications (±SD) was reported as a measure of 
prediction accuracy. Additionally, the regression coeffi-
cients of TBVs on predicted GEBVs were calculated to 
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assess the dispersion bias of predictions. The regression 
coefficients were calculated using the “lm” R function and 
the average regression coefficient over five replications 
(±SD) was reported as a measure of bias of predictions in 
each scenario. 
 

  RESULTS AND DISCUSSION 
 SD in all scenarios The average prediction accuracy and

including different number of QTL (10, 50 and 500) and 
different h2 (0.1 and 0.4) within different reference popula-
tion sizes (1500, 5000 and 12500) are shown in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 Accuracy of genomic predictions for different scenarios includ-

In general, increasing the reference population size in-
cr

ediction accuracy obtained by 

fficients of TBVs on 

ing varying numbers of QTL, reference population sizes and different 
heritability 
 

eased the accuracy of prediction in all scenarios regard-
less of prediction method. When the number of simulated 
QTL was low (i.e., 10 and 50 QTL), WssGBLUPFST outper-
formed WssGBLUPNLA and ssGBLUP. By increasing the 
size of reference population from 1500 to 12500 individu-
als, the prediction accuracy of WssGBLUPFST in the sce-
nario with 10 QTL increased from 0.56 to 0.87 and in the 
scenario with 50 QTL increased from 0.53 to 0.83. For the 
same aforementioned reference population size, the predic-
tion accuracy of WssGBLUPNLA increased from 0.51 to 
0.84 in scenario with 10 QTL and increased from 0.52 to 
0.82 in the scenario with 50 QTL. As expected, ssGBLUP 
method produced the least accurate predictions ranging 
from 0.50 to 0.82 and from 0.50 to 0.80 for 10 and 50 QTL, 
respectively. In the scenario of many QTL with small ef-
fects (i.e., 500 QTL), the WssGBLUPFST was no longer 
superior to WssGBLUPNLA and ssGBLUP. The prediction 

accuracy of WssGBLUPNLA and ssGBLUP were similar and 
in the range of 0.51 to 0.83.  
In 500 QTL scenarios, the pr
WssGBLUPFST was slightly lower than other methods, and 
it was in the range of 0.51 to 0.82. 

The calculated regression coe
GEBVs are shown in Figure 2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 The regression coefficient of methods for different QTL scenar-

A regression coefficient close to 1 means that GEBVs are 
no

r

ios, reference population sizes and heritability 
 

t underestimated or overestimated. In general, all meth-
ods showed low prediction bias. In general, the regression 
coefficients for ssGBLUP and WssGBLUPNLA were 
slightly lower than 1, indicating that GEBVs were overes-
timated; and for WssGBLUPFST was higher than 1, indicat-
ing that GEBVs were underestimated. Increasing the num-
ber of QTL reduced the bias of predictions in 
WssGBLUPFST method for less heritable traits (h2=0.1); 
while, had no or small effect on the bias of predictions for 
medium-to-high heritable traits. Moreover, increasing the 
size of reference population resulted in a reduction in bias 
of predictions in WssGBLUPFST. 

Giving different weights to SNPs to construct G has been 
eported to be useful to increase the accuracy of genomic 

prediction for traits with major QTL (Lourenco et al. 2017; 
Oget et al. 2019; Teissier et al. 2019; Mehrban et al. 2021). 
In this study, we investigated the accuracy and bias of ge-
nomic predictions using weighting methods called 
WssGBLUPNLA (VanRaden, 2008; Zhang et al. 2016) and 
WssGBLUPFST (Chang et al. 2019) for the traits with dif-
ferent genomic architecture and heritability, and different 
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reference population sizes. We also used regular ssGBLUP 
as the base prediction method. In our study, as expected, 
both WssGBLUPFST and WssGBLUPNLA outperformed 
ssGBLUP when the trait is controlled by a limited number 
of QTL (i.e., 10 and 50 QTL).  

The results showed that the superiority of the 
W

 

ssGBLUPFST compared to WssGBLUPNLA depended on 
the genetic architecture of the trait, and size of the reference 
population. Result showed that, when a limited number of 
QTL were simulated, WssGBLUPFST produced more accu-
rate GEBVs compared to WssGBLUPNLA. In fact, by in-
creasing the number of QTL from 10 to 50 QTL, 
WssGBLUPFST still outperformed WssGBLUPNLA, but its 
superiority decreased from 7% to 1%. This could be ex-
plained by the QTL effects that were sampled from a 
gamma distribution where there are a small number of QTL 
with major effect explaining a larger proportion the genetic 
variance. Therefore, it seems that the FST outperforms in 
scenarios when the trait is governed by some major QTL. 
This, however, needs to be confirmed by real data. When 
10 and 50 QTL were simulated, in general, the first major 
QTL explained around 40% and 15% of the total additive 
genetic variance, respectively (data not shown). To be more 
specific, in the Figure 3, FST values identified the first ma-
jor QTL on chromosome 19 which explained about 85% of 
the total genetic variance of the trait.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 The Manhattan plot representing QTL effects (red circles) and 

In addition, FST identified the 2nd and 3rd major QTL on 
ch

 using 1250 indi-
vi

rep-

SNP weights achieved by using NonlinearA and FST methods for 10-QTL 
scenario (h2=0.1), and reference population size equal to 12500 
 

romosomes 9 and 1, respectively. Regarding the fact that 
these QTL had large effects, their allele frequencies are 
expected to be so different in the top 5% and bottom 5% 
subpopulations of reference population. This could provide 
FST the power to identify these major QTL precisely 

(Ghoreishifar et al. 2021). Although WssGBLUPNLA identi-
fied the first 3 major QTL, and even QTL with smaller ef-
fects, e.g., a QTL on chromosome 5, it failed to fine map 
the signal on chromosome 19, and gave almost equal 
weights to the three major identified QTL. Therefore, it 
seemed that FST could identify major QTL more precisely. 
This might explain why the prediction accuracy of 
WssGBLUPNLA was less than that of WssGBLUPFST when 
a limited number of QTL were simulated, and even explain 
that why the superiority of WssGBLUPFST to WssGBLUP-

NLA decreases from 7% to 1% when the number of simu-
lated QTL increased from 10 to 50 QTL. Note that the 
weights of FST and nonlinearA as well as QTL effects were 
scaled between zero and one in Figure 3. 

It should also be accounted that despite
duals (i.e., 5% top and 5% bottom of 12500 individuals in 

the reference population) for FST calculation, false positive 
signals are more likely to be introduced to the prediction 
model (i.e., chromosomes 1 and 3 in Figure 3) that might 
reduce the prediction accuracy and increase the bias of 
GEBVs. To deal with this challenge, and in order to reduce 
the number of detected false positive QTL signals, applica-
tion of different selection signature methods and combining 
them into a framework called DCMS (de-correlated com-
posite of multiple signals) (Ma et al. 2015) might be an 
option which can be further studied in the future. Ma et al. 
(2015) reported that the resolution of selection signature 
mapping and the power of detecting selection signals were 
improved by using DCMS compared to most single statis-
tics, such as FST. Ghoreishifar et al. (2020b) reported that 
incorporating p-values of different statistics in a single 
DCMS framework may help select and prioritize candidate 
genes. Moreover, composite measures such as DCMS have 
been reported to identify the causal variants (i.e., the vari-
ants under selection in the detected signature regions) more 
precisely. It was also reported that by increasing the marker 
density, the power of DCMS method could be increased. 
Generally, FST could be used to identify variants that are 
fixed or close to fixation. Therefore, using other methods 
such as iHS and xpEHH methods and combining them into 
a DCMS framework could help to detect QTL with inter-
mediate frequency (Ma et al. 2015) as well. In general, the 
prediction accuracy of WssGBLUP methods is expected to 
be increased by identifying and giving appropriate weight 
to QTL with major effects in addition to reducing false 
positive rate in QTL mapping. 

Based on simulation, three different number of QTL 
resenting oligogenic traits affected by small number of 
QTL (i.e., 10 and 50 QTL) and polygenic traits affected by 
many QTL with small effects (500 QTL). Some studies 
simulated over 5,000 QTL to mimic complex traits. How-
ever, we did not simulate more than 500 QTL because we 
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observed that by increasing the number of QTL from 10 to 
500, the superiority of weighting methods to ssGBLUP 
decreased (WssGBLUPFST) or remained constant 
(WssGBLUPNLA). Hence, weighting ssGBLUP is not rec-
ommended for polygenic traits unless the QTL were de-
tected, and their weights could be calculated precisely. 
Given the limitations in detecting QTL with small effects, 
for the traits controlled by the number of QTL greater than 
500, it is unreasonable to use WssGBLUPFST. It is worth 
noting that selection for polygenic traits would leave only 
minor footprints because of the selection for numerous re-
gions with lower intensity across the genome (Kemper et 
al. 2014; Ghoreishifar et al. 2020b). As a result, identifica-
tion of these QTLs with small effects is difficult to track 
with FST. 
 

  CONCLUSION 

powerful method to detect major QTL The FST could be a 
compared to nonlinearA method, while the latter could be 
more useful to identify QTL with smaller effects. This 
could be attributed to superiority of FST over NonlinearA 
for genomic predictions of the traits explained by a few 
QTLs. The false positive QTL signals, undetected QTLs 
and inaccurate weights are potentially restricting the use-
fulness of WssGBLUP for genomic predictions of oli-
gogenic traits. Therefore, identification of major QTL by 
using high-density markers and application of multiple 
methods such as different selection signature statistics and 
even combining them with NonlinearA might help to detect 
QTL and consequently improve the genomic prediction for 
oligogenic traits in WssGBLUP. 
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