تعداد نشریات | 418 |
تعداد شمارهها | 10,003 |
تعداد مقالات | 83,617 |
تعداد مشاهده مقاله | 78,264,759 |
تعداد دریافت فایل اصل مقاله | 55,319,416 |
GENERALIZED INVERSES OF ANTI-TRIANGULAR BLOCK OPERATOR MATRICES | ||
Future Generation of Communication and Internet of Things | ||
دوره 2، شماره 1، فروردین 2023، صفحه 44-50 اصل مقاله (1.22 M) | ||
نوع مقاله: Original Paper | ||
نویسنده | ||
Tahereh Haddadi* | ||
Department of Mathematics, Semnan Branch, Islamic Azad University, Semnan, Iran. | ||
چکیده | ||
We introduce a new class of generalized inverse which is called π-Hirano inverse. Let A be a Banach algebra with an identity. We first recall the definitions of some generalized inverses. As is well known, in 1958, Drazin [6] defined, an element a∈A has Drazin inverse if there is the element a∈A which satisfies ax=xa, xax=x and a-a^2 x∈N(A). In this paper some elementary properties of the π-Hirano inverse are obtained. We investigate the existence of the π-Hirano inverse for the anti-triangular operator matrix N=[0&B&C&D] with DCB=0 and et al. Certain multiplicative and additive results for the π-Hirano inverse in a Banach algebra are presented. We then apply some conditions under which a 2×2 block operator matrix has π-Hirano inverse over Banach spaces. | ||
کلیدواژهها | ||
Drazin inverse؛ π -Hirano inverse؛ Additive property؛ Block matrix؛ Schur complement | ||
آمار تعداد مشاهده مقاله: 15 تعداد دریافت فایل اصل مقاله: 60 |