تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,556 |
تعداد مشاهده مقاله | 77,614,750 |
تعداد دریافت فایل اصل مقاله | 54,677,143 |
Reclamation of poultry litter for the production of biochar | ||
International Journal of Recycling Organic Waste in Agriculture | ||
مقاله 11، دوره 12، Special Issue، آبان 2023، صفحه 147-158 اصل مقاله (496.35 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.30486/ijrowa.2023.1960315.1490 | ||
نویسندگان | ||
Rose Erdoo Kukwa* 1؛ Donald Tyoker Kukwa1، 2؛ Samson Saater Barnabas1 | ||
1Department of Chemistry and Centre of Excellence for Food Technology and Research (CEFTER) Benue State Universi-ty, Makurdi, Nigeria | ||
2Department of Chemical Engineering Durban University of Technology, Durban, South Africa | ||
چکیده | ||
Purpose: Poor management of chicken litter by the poultry industry has caused many environmental issues. Biochar’s unique characteristics make poultry litter-to-biochar conversion an intriguing management option thus, could be utilized as an organic fertilizer for plant nutrients. In this research, poultry litter was converted into biochar, which offers a range of possible applications, including analyzing key nutrients, improving air and water quality, conditioning soil, and neutralizing acidic soils. Method: Fresh poultry litter was pyrolyzed for 20 minutes at a temperature of 500 oC in an oxygen-restricted muffle furnace to produce biochar. The biochar was examined chemically and physically using a variety of techniques. These included microwave plasma atomic emission spectroscopy (MP-AES), the scanning electron microscope (SEM), the Fourier transform infrared (FTIR) spectroscopy, and thermo gravimetric analysis (TGA and DTG). Results: The pyrolysis output was 56.38%, 32.20% ash, 2.00% moisture, 0.60 kg/m3 bulk density, pH 9.65, and 0.00314 dS/m EC. The mineral elemental analysis gave 621.73 mg/kg calcium, 63.65 mg/kg potassium, 48.94 mg/kg magnesium, 13.14 mg/kg sodium, and 11.85 mg/kg phosphorus. FTIR showed the presence of functional groups which could act as cation adsorbents. SEM pictures showed the sample’s amorphous, non-uniform surface. TGA and DTG curves showed mass loss and sample breakdown as the temperature climbed. Conclusion: Poultry litter converted to biochar can act as a nutrient-rich soil conditioner to address mineral deficits in fruits and vegetables grown in acidic soils. This is a good way to recycle agricultural trash. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Pyrolysis؛ Chicken wastes؛ Soil conditioner؛ Pollution؛ Environment؛ Management | ||
مراجع | ||
Abbasi MK, Anwar AA (2015) Ameliorating effects of biochar derived from poultry manure and white clover residues on soil nutrient status and plant growth promotion-greenhouse experiments. PLoS One 10(6):e0131592. https://doi.org/10.1371/journal.pone.0131592 Adekiya AO, Agbede TM, Ejue WS, Aboyeji CM, Dunsin O, Aremu CO, Owolabi AO, Ajiboye BO, Okunlola OF, Adesola OO (2020) Biochar, poultry manure and NPK fertilizer. Sole and Combine 39. https://doi.org/10.1515/opag-2020-0004 Akanni KA, Benson OB (2014) Poultry wastes management strategies and environmental implications on human health in Ogun State of Nigeria. Adv Econ Bus 2(4):164–171. https://doi.org/10.13189/aeb.2014.020402 Antonangelo JA, Zhang H (2020) The use of biochar as a soil amendment to reduce potentially toxic metals (ptms) phytoavailability. In: Abdelhafez AA, Abbas MHH (Ed) Applications of biochar for environmental safety. Intech Open, pp 1-15. http://dx.doi.org/10.5772/intechopen.92611 Anyanwu IN, Alo MN, Onyekwere AM, Crosse JD, Nworie O, Chamba EB (2018) Influence of biochar aged in acidic soil on ecosystem engineers and two tropical agricultural plants. Ecotoxicol Environ Saf 153:116-126. https://doi.org/10.1016/j.ecoenv.2018.02.005 Bernier MH, Levy GJ, Fine P, Borisover M (2013) Organic matter composition in soils irrigated with treated wastewater: FT‐IR spectroscopic analysis of bulk soil samples. Geoderma 209: 233–240. https://www.sciencedirect.com › article › abs › pii Bolan NSA, Szogi AA, Chuasavathi T, Seshadri B, Rothrock Jr J, Panneerselvam P (2010) Uses and management of poultry litter. Worlds Poult Sci J 66(4):673-698. http://dx.doi.org/10.1017/S0043933910000656 Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428. https://doi.org/10.1016/j.biortech.2011.11.084 Cantrell KB, Martin Ii JH, Novak JM (2014) Poultry litter and switchgrass blending for biochar production. American Society of Agricultural and Biological Engineers 57(2):543-553. https://doi.org/10.13031/trans.57.10284 Cely P, Gascó G, Paz-Ferreiro J, Méndez A (2015) Agronomic properties of biochars from different manure wastes. J Anal Appl Pyrolysis 111:173–182. https://doi.org/10.1016/j. jaap.2014.11.014 Chaves LHG, Fernandes JD, Mendes JS, Dantas ERB, Guerra HC, Tito GA, Silva AAR, Laurentino LGS, Souza FG, Lima WB, Chaves IB (2020) Characterization of poultry litter biochar for agricultural use. Sylwan 164(6):1-21. https://www.researchgate.net/publication/343681996 Chen Y, Jiang Z, Wu D, Wang H, Li J, Bi M, Zhang Y (2019) Development of a novel bio-organic fertilizer for the removal of atrazine in soil. J Environ Manag 233:553-560. https://doi.org/10.1016/j.jenvman.2018.12.086 Dalólio FS, da Silva JN, Carneiro de Oliveira AC, Ferreira Tinôco I. de F., Barbosa RC, Resende M de O, Albino LFT, Coelho ST (2017) Poultry litter as biomass energy: A review and future perspectives. Renewable and Sustainable Energy Reviews 76: 941–949. https://doi.org/10.1016/j.rser.2017.03.104 Daramy MA, Kawada R, Oba S (2020) Alterations of the chemical compositions, surface functionalities, and nitrogen structures of cage layer chicken manure by carbonization to improve nitrogen bioavailability in soil. Agronomy 10:1031, 1-20. https://doi.org/10.3390/agronomy10071031 Domingues RR, Trugiho PF, Silva CA, de Melo ICNA, Melo LCA, Magriotis ZM, Sánchez-Monedero A (2017) Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS One 12:1–19. https://doi.org/10.1371/journal.pone.0176884 Elnour AY, Alghyamah AA, Shaikh HM, Poulose AM, Al-Zahrani SM, Anis A, Al-Wabel MI (2019) Effect of pyrolysis temperature on biochar microstructural evolution, physicochemical characteristics, and its influence on biochar/ polypropylene composites. Appl Sci 9:1149. https://doi.org/10.3390/app9061149 Evans MR, Jackson BE, Popp M, Sadaka S (2017) Chemical properties of biochar materials manufactured from agricultural products common to the Southeast United States. Horttechnology 27:16–23. https://doi.org/10.21273/HORTTECH03481-16 Guo M, Song W, Tian J (2020) Biochar-facilitated soil remediation: Mechanisms and efficacy variations. Front Environ Sci 8:1-23. https://doi.org/10.3389/fenvs.2020.521512 Gurav R, Bhatia SK, Choi T-R, Park Y-L, Park JY, Han Y-H, Vyavahare G, Jadhav J, Song H-S, Yang P, Yoon JJ, Bhatnagar A, Choi Y-K, Yang Y-H (2020) Treatment of furazolidone contaminated water using banana pseudostem biochar engineered with facile synthesized magnetic nanocomposites. Bioresour Technol 297:122-472. https://doi.org/10.1016/j.biortech.2019.122472 Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems- A review. Mitig Adapt Strateg Glob Chang 11: 403–427. https://doi.org/10.1007/s11027-005-9006-5 Liang Y, Cao X, Zhao L, Xu X, Harris W (2014) Phosphorus release from dairy manure, the manure-derived biochar, and their amended soil: Effects of phosphorus nature and soil property. J Environ Qual 43(4):1504–1509. https://doi.org/10.2134/jeq2914.01.0021 Lima I, Ro K, Reddy G, Boykin D, Klasson K (2015) Efficacy of chicken litter and wood biochars and their activated counterparts in heavy metal clean up from wastewater. Agriculture 5(3):806-825. http://doi.org/10.3390/agriculture5030806 Liu Z, Niu W, Chu H, Zhou T, Niu Z (2018) Effect of the carbonization temperature on the properties of biochar produced from the pyrolysis of crop residues. Bioresour 13(2):3429-3446. https://doi.org/10.15376/biores.13.2.3429-3446 Méndez A, Tarquis AM, Saa-Requejo A, Guerrero F, Gascó G (2013) Influence of pyrolysis temperature on composted sewage sludge biochar priming effect in a loamy soil. Chemosphere 93(4):668–676. https://doi.org/10.1016/j.chemosphere.2013.06.004 Merlin N, Nogueira BA, de Lima VA, dos Santos LM (2014) Application of fourier transform infrared spectroscopy, chemical and chemometrics analyses to the characterization of agro-industrial waste. Química Nova 37(10): 584-1588. https://doi.org/10.5935/0100-4042.20140259 Mierzwa-Hersztek M, Gondek K, Baran A (2016) Effect of poultry litter biochar on soil enzymatic activity, ecotoxicity and plant growth. Appl Soil Ecol 105:144-150. https://doi.org/10.1016/j.apsoil.2016.04.006 Mukherjee A, Lal R (2013) Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 3(2): 313–339. https://doi.org/10.3390/agronomy3020313 Mukome FND, Zhang X, Silva LCR, Six J, Parikh SJ (2013) Use of chemical and physical characteristics to investigate trends in biochar feedstocks. J Agric Food Chem 61(9): 2196−2204. https://doi.org/10.1021/jf3049142 Nair VD, Nair PKR, Dari B, Freitas AM, Chatterjee N, Pinheiro FM (2017) Biochar in the agroecosystem-climate-change-sustainability nexus. Front Plant Sci 8:2051. https://doi.org/10.3389/fpls.2017.02051 Oginni O, Singh K (2020) Influence of high carbonization temperatures on microstructural and physicochemical characteristics of herbaceous biomass-derived biochars. J Environ Chem Eng 8(5):104169. https://doi.org/10.1016/j.jece.2020.104169 Pavia DL, Lampman GM, Kriz GS, Vyvyan JR (2009) Introduction to spectroscopy, 4th Ed., Brooks/Cole: Belmont Sánchez A, Artola A, Font X, Gea T, Barrena R, Gabriel D, Sánchez-Monedero MA, Roig A, Cayuela ML, Mondini C (2015) Greenhouse gas from organic waste composting: Emissions and management. In: Lichtfouse E, Schwarzbauer J, Robert D (Ed) CO2 sequestration, biofuels and depollution. Environmental Chemistry for a Sustainable World 5. Springer, Cham. https://doi.org/10.1007/978-3-319-11906-9_2 Sánchez-Monedero MA, Cayuela ML, Roig A, Jindo K, Mondini C, Bolan N (2018) Role of biochar as an additive in organic waste composting. Bioresour Technol 247:1155-1164. https://doi.org/10.1016/j.biortech.2017.09.193 Sarfaraz Q, da Silva LS, Drescher GL, Zafar M, Severo FF, Allan Kokkonen A, Molin GD, Shafi MI, Shafique Q, Solaiman ZM (2020) Characterization and carbon mineralization of biochars produced from different animal manures and plant residues. Sci Rep 10:955. https://doi.org/10.1038/s41598-020-57987-8 Schilke-Gartley KL, Sims JT (1993) Ammonia volatilization from poultry manure-amended soil. Biol Fertil Soils 16:5–10. https://www.dairyn.cornell.edu › documents Sikder S, Joardar JC (2019) Biochar production from poultry litter as management approach and effects on plant growth. Int J Recycl Org Waste Agric 8: 47–58. https://doi.org/10.1007/s40093-018-0227-5 Simbolon LM, Pandey DS, Horvat A, Kwapinska M, Leahy JJ, Tassou SA(2019) Investigation of chicken litter conversion into useful energy resources by using low temperature pyrolysis. Energy Procedia 161: 47–56. https://doi.org/10.1016/j.egypro.2019.02.057 Smidt E, Parravicini V (2009) Effect of sewage sludge treatment and additional aerobic post‐stabilization revealed by infrared spectroscopy and multivariate data analysis. Bioresour Technol 100:1775–1780. https://doi.org/10.1016/j.biortech.2008.10.003 Steiner C, Das KC, Melear N, Lakly D (2010) Reducing nitrogen loss during poultry litter composting using biochar. J Environ Qual 39 (4):1236. https://doi.org/10.2134/jeq2009.0337 Stella Mary G, Sugumaran P, Niveditha S, Ramalakshmi B, Ravichandran P, Seshadri S (2016) Production, characterization and evaluation of biochar from Pod (Pisumsativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. Int J Recycl Org Waste Agric 5:43–53. https://doi.org/10.1007/s40093-016-0116-8 Trupiano D, Cocozza C, Baronti S, Amendola C, Vaccari FP, Lustrato G, Lonardo SD, Fantasma F, Tognetti R, Scippa GS (2017) The effects of biochar and its combination with compost on lettuce (Lactuca sativa L.) growth, soil properties, and soil microbial activity and abundance. Int J Agron 2017:1-12. https://doi.org/10.1155/2017/3158207 Tsai WT, Liu SC, Chen HR, Chang YM, Tsai YL (2012) Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere 89:198–203. https://doi.org/10.1016/j.chemosphere.2012.05.085 Vijayanand C, Kamaraj S, Sriramajayam S, Ramesh D (2016) Biochar production from arecanut waste. Int J Farm Sci 6(1):43-48. https://www.cabdirect.org/cabdirect/abstract/20163168834 Wang Y, Lin Y, Chiu PC, Imhoff PT, Guo M (2015) Phosphorus release behaviors of poultry litter biochar as a soil amendment. Sci Total Environ 512–513:454–463. https://doi.org/10.1016/j.scitotenv.2015.01.093 Wang D, Li C, Parikh SJ, Scow KM (2019) Impact of biochar on water retention of two agricultural soils – A multi-scale analysis. Geoderma 340: 185–191. https://doi.org/10.1016/j.geoderma.2019.01.012 Wisnubroto EI, Utomo WH, Soelistyari HT (2017) Biochar as a carrier for nitrogen plant nutrition the release of nitrogen from biochar enriched with ammonium sulfate and nitrate acid. Int J Appl Eng Res 12(6):1035–1042 (ISSN 0973-4562). http://www.ripublication.com Xu G, Lv Y, Sun J, Shao H, Wei L (2012) Recent advances in biochar applications in agricultural soils: Benefits and environmental implications. Clean Soil Air Water 40:1093–1098. https://doi.org/10.1002/clen.201100738 Zhang Y, Lin F, Wang X, Zou J, Liu S (2016) Annual accounting of net greenhouse gas balance response to biochar addition in a coastal saline bioenergy cropping system in China. Soil Tillage Res 158:39–48. https://doi.org/10.1016/j.still.2015.11.006 Zheng H, WangZ, Deng X, Zhao J, Luo Y, Novak J, Herbert S, Xing B (2013)Characteristics and nutrient values of biochars produce from giant reed at different temperatures. Bioresour Technol 130:463–471. https://doi.org10.1016/j.biortech.2012.12.044 Zhou D, Ghosh S, Zhang D, Liang N, Dong X, Wu M, Pan B (2016) Role of ash content in biochar for copper immobilization. Environ Eng Sci 33(12): 962-969. https://doi.org/10.1089/ees.2016.0042 | ||
آمار تعداد مشاهده مقاله: 114 تعداد دریافت فایل اصل مقاله: 255 |