تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,559 |
تعداد مشاهده مقاله | 77,729,847 |
تعداد دریافت فایل اصل مقاله | 54,782,026 |
بررسی اثر بازدارندگی عصاره های آبی و فرموله شده علف هرز تلخه (Acroptilon repens L.) با کیتوزان بر جوانه زنی علف هرز چاودار (Secale cereale L.) | ||
تحقیقات بذر | ||
دوره 12، شماره 45، بهمن 1401 اصل مقاله (1.22 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.30495/jsr.2023.1994021.1262 | ||
نویسندگان | ||
محمدتقی آل ابراهیم* 1؛ امیر حاج زاده2؛ فاطمه احمدنیا3؛ لیلی نباتی سوها4 | ||
1استاد، علوم علفهایهرز، گروه آموزشی تولید و ژنتیک بهنژادی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
2دانش آموخته کارشناسی ارشد علوم علف های هرز، گروه آموزشی مهندسی تولید و ژنتیک به نژادی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق | ||
3دانشجوی دکتری اگروتکنولوژی- فیزیولوژی گیاهان زراعی، گروه آموزشی تولید و ژنتیک به نژادی، دانشکده کشاورزی و منابع طبیعی، دانشگاه | ||
4دانشجوی دکتری اگروتکنولوژی- علوم علف های هرز، گروه آموزشی تولید و ژنتیک به نژادی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، | ||
چکیده | ||
به منظور بررسی جوانه زنی علف هرز چاودار (Secale cereal L.) تحت تأثیر عصاره آبی تلخه و عصاره فرموله شده آن با کیتوزان آزمایشی در سال 1396 در قالب فاکتوریل بر پایه طرح کاملاً تصادفی با سه تکرار در آزمایشگاه علوم علفهایهرز دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی اجرا شد. تیمارهای آزمایشی شامل نوع عصاره (عصاره آبی تلخه و عصاره فرموله شده آن با کیتوزان) و هفت غلظت صفر (آب مقطر)، 625/0، 25/1، 5/2، 5، 10 و20 درصد بود. نتایج نشان داد که جوانهزنی چاودار و مؤلفههای وابسته به آن در سطح احتمال یک درصد معنیدار بود. عصارهی فرموله شده تلخه در غلظت 625/0 باعث افزایش 17/15 درصدی طول ساقه چه نسبت به تیمار شاهد شد و غلظتهای 5 و 10 درصد از عصاره فرموله شده باعث کاهش 100 درصدی طول ساقه چه و ریشه چه نسبت به تیمار شاهد شدند. غلظت 625/0 از عصاره آبی تلخه کمترین (10 درصد) و غلظتهای 5 و 10 از عصاره فرموله شده با کیتوزان بیشترین (100 درصد) کاهش وزن تر ساقه چه، وزن تر ریشه چه و وزن تر کل گیاهچه را نسبت به تیمار شاهد نشان دادند. همچنین غلظتهای 5 و 10 عصاره فرموله شده تلخه موجب کاهش 100 در صدی وزن خشک ساقه چه، ریشه چه و وزن خشک کل گیاهچه شدند. عصاره آبی و فرموله شده تلخه با کیتوزان در غلظتهای 10 و 20 درصد قابل توصیه برای کنترل جوانهزنی علفهرز چاودار در شرایط آزمایشگاهی هستند. | ||
کلیدواژهها | ||
آللوپاتی؛ جوانهزنی؛ علفکش زیستی؛ کیتوزان؛ نانوذرات | ||
اصل مقاله | ||
References Abbasi Bidli, M. and Abdali Mashhadi, A. 2017. Effect of priming on germination characteristics and growth of the Vigna radiata (Shushtar ecotype) seeding under salinity stress. Iranian J. Seed Sci and Res. 4(1): 75-88. Al, A., Bestwerk, C. S., Barna, B. and Mansfield, J.W. 1995. Enzyme regulation the accumulation of active oxygen species during the hypersensitive reaction of bean to Pseudomonas syringae pv. phaseolicola. Planta. 197: 240- 249. Alagna, F., Balestrini, R., Chitarra, W., Marsico, A.D., Nerva, L. 2020. Getting ready with the priming: innovative weapons against biotic and abiotic crop enemies in a global changing scenario. In Priming-Mediated Stress and Cross-stress Tolerance in Crop plants. Academic Press, pp. 35–56. Ansari, O., Choghazardi, H. R., Sharif Zadeh, F. and Nazarli, H. 2012. Seed reserve utilization and seedling growth of treated seeds of mountain rye (Secale montanum) as affected by drought stress. Cerc Agronomice. Moldova. 2 (150): 43-48. Ansari, O., Tavakkol Afshari, R., Sharif-Zadeh, F. and Shayanfar, A. 2013. The role of priming on seed reserve utilization and germination of mountain rye (Secale montanum) seeds under salinity stress. Iranian Journal of Field Crop Science. Iranian J. Field Crop Sci. 44(2): 181-189. Asadi Aghbolaghi, n. and Sedghi, M. 2014. The effect of osmo and hormone priming on germination and seed reserve utilization of millet seeds under drought stress. J. Stress Physiol and Bioch. 10(1): 214-222. Ashraf, M. and Rauf, H. 2001. Inducing salt tolerance in maize (Zea mays L.) through seed priming with chloride salts: growth and ion transport at early growth stages. Acta Physiol Planta. 23: 407 414. Bailly, C. 2004. Active oxygen species and antioxidants in seed biology. Seed. Sci. Res, 14: 93- 107. Bradford, K.J. 1995. Water relation in seed germination. In: J. Kigel and G. Galili (eds), Seed development and germination. Marcel Dekker. pp: 351- 396. Dantas, B.F., Ribeiro, L.d.S., and Aragão, C.A. 2007. Germination, initial growth and cotyledon protein content of bean cultivars under salinity stress. Revista Bra. de Sem. 29(2):106-110. Deilam, A., Rouhani, H., Sabouri, H. and Gholam Ali Pooralmadari, E. 2019. Effect of drought stress and salinity on germination, soluble carbohydrates and proline of Atriplex halimus. Iranian J. Seed Sci and Res. 6(2): 245-255. Ehtaiwesh, A.F., and Rashed, F.H. 2019. The effect of salinity on Libyan soft wheat (Triticum aestivum L.) at germination stage. Scientific J. Applied Sci. Sabratha Uni. 3(2):41-54. Elradi, S., Suliman, M., Zhou, G., Nimir, E., Nimir, N., Zhu, G., Jiao, X., Meng, T., Ibrahim, M. and Ali, A. 2022. Seeds priming with ß-aminobutyric acid alleviated salinity stress of chickpea at germination and early seedling growth. Chilian J. Agri. Res. 82(3): 426- 436. Fatih, Ö. and Kirli, A. 2018. Effects of salt stress on germination and seedling growth of different bread wheat (Triticum aestivum L.) cultivars. Akad. Ziraat Der. 7(2):191-196. Feghhenabi, F., Hadi, H., Khodaverdiloo, H, Th. and van Genuchten, M. 2020. Seed priming alleviated salinity stress during germination and emergence of wheat (Triticum aestivum L.). Agri. Water Manag. 231, 106022. Greenway, H. and Muns. R. 1980. Mechanism of salt tplerance of non-halophytes. Annual Rev. Plant Physiol. 31: 149- 190. Grieve, C.M., Lesch, S., Francois, L.E. and Maas, E.W. 1992. Analysis of main-apike yield components in salt-stressed wheat. Crop Sci. 32: 697- 703. Guzman, M. and Olave, J. 2004. Effect of N-form and saline priming on germination and vegetative growth of Galia-type melon (Cucmis melol. Cv. Primal) under salinity. Acta Horti. 659: 253- 260. Heshmati, S., Dehaghi, M.A., Farooq, M., Wojtyla, Ł., Maleki, K., Heshmati, S., 2021. Role of melatonin seed priming on antioxidant enzymes and biochemical responses of Carthamus tinctorius L. under drought stress conditions. Plant Stress 2, 100023. Hossain, M.A., Liu, F., Burritt, D., Fujita, M., Huang, B., 2020. Priming-Mediated stress and Cross-stress Tolerance in Crop plants. Academic Press. Hus, J.L. and Sung, J.M. 1997. Antioxidant role of glutathione associated with accelerated aging and hydration of triploid Watermelon seeds. Physiological plantrum, 100: 967- 974. Ibrahim, E.A. 2016. Seed priming to alleviate salinity stress in germinating seeds. Iqbal, M. and Ashraf, M. 2007. Seed treatment with auxins modulates growth and ion partitioning in salt-stressed wheat plants. J. Integ. Plant Biolo, 49: 1003-1015. Janda, T., Szalai, G., Tari, I. and Paldi, E. 1999. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta, 208: 175- 180. Johnson, L.B. and Cunningham, B.A. 1972. Peroxidase activity in healthy and leaf-rustinfected wheat leaves. Phytochemistry, 11: 547–551. Kandhol, N., Singh, V.P., Ramawat, N., Prasad, R., Chauhan, D.K., Sharma, S., Sahi, S. and Peralta-Videa, J. 2022. Nano-priming: impression on the beginner of plant life. Plant Stress. 5, 100091. Khan, M. A. and Gulzar, S. 2003. Germination responses of Sporobolus ioclados. A saline desert grass. J. Arid Envir. 27: 177- 237. Llorens, E., Gonz´ alez-Hernandez, ´ A.I., Scalschi, L., Fern´ andez-Crespo, E., Camanes, ˜G., Vicedo, B. and García-Agustín, P., 2020. Priming mediated stress and cross-stress tolerance in plants: concepts and opportunities. Priming-Mediated Stress and CrossStress Tolerance in Crop Plants. Academic Press, pp. 1–20. McDonald, M.B. 1999. Seed deterioration Physiology, repair and assessment. Seed Sci. Techno. 27: 177-237. Nair, A., Bhukya, D.P.N., Sunkar, R., Chavali, S. and Allu, A.D. 2022. Molecular basis of priming-induced acquired tolerance to multiple abiotic stresses in plants. J. Exp. Bot. 73(11): 3355-3371. Nimir, N.E.A., Zhou, G., Zhu, G. and Ibrahim, M.E. 2020. Response of some sorghum varieties to GA3 concentrations under different salt compositions. Chilean Journal of Agricultural Research 80:478-486. Patade, V.Y., Maya, K. and Zakwan, A. 2011. Seed priming mediated germination improvement and tolerance to subsequent exposure to cold and salt stress in capsicum. Research J. Seed Sci. 4 (3): 125 -136. (Journal) Poljakoff-Maybo, A., Somers, G. F. and Werker, E.G. 1994. Seeds of Kosteletzkya virginica (Malvacea): Their structure, germination and salt tolerance. American J. Botany. 81: 54- 59. Rouhi, H.R., Aboutalebian, M. A., Moosavi, S.A., Karimi, F. A. Karimi, F. Saman, M. and Samadi, M. 2012. Change in several antioxidant enzymes activity of Berseem clover (Trifolium alexandrinum L.) by priming. International J. Agri Sci. 2(3): 237- 243. Sheykhbaglou, R. Rahimzadeh, S. Ansari, O. and Sedghi, M. 2014. The effect of salicylic acid and gibberellin on seed reserve utilization, germination and enzyme activity of Sorghum (Sorghum bicolor L.) seeds under drought stress. J. Stress Physio and Bioch. 10(1): 5-13. Soltani, A., Gholipoor M. and Zeinali, E. 2006. Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Envir and Exp. Botany, 55: 195–200. Tabassum, T., Farooq, M., Ahmad, R., Zohaib, A. and Wahid, A. 2017. Seed priming and transgenerational drought memory improves tolerance against salt stress in bread wheat. Plant Physio and Bioch. 118:362-369. | ||
مراجع | ||
References
Alebrahim, M.T. Azadbakht, A. and Jafarzadeh gallo, P. 2018. Study on the effect of Russian knapweed (Acroptilon repens L.) aqueous extract on seed germination and growth characteristics of purslane, common yellow mallow and wheat. Iranian Journal of Seed Sciences and Research. 5(4):13-24.
Alebrahim, M.T. Fakhari, R. and Sharifi, K. 2016. Allelopathic effect of Acroptilon repens extract on emergence of some crops and weeds. Journal of Seed Research. 6(20):21-13.
Alebrahim, M.T. Rashed Mohassel, M.H. Wilcockson, S. Baghestani, M.A. and Ghorbani, R. 2012. Evaluating of Some Preemergence herbicides for lambsquarter and redroot pigweed control in potato fields. Journal of plant protection (agricultural science and technology). 25(4):358-367.
Alebrahim, M.T. Rouhi, H. Serajchi, M. Majd, R. and Ghorbani, R. 2011. Study of dormancy-breaking and optimum temperature for germination of Russian knapweed (Acroptilon repens L.). International Journal of Agriscience. 1(1):19-25.
Alford, E. Perry, L. Qin, B. Vivanco, J. and Paschke, M. 2007. A putative allelopathic agent of Russian knapweed occurs in invaded soils. Soil Biology and Biochemistry. 39:1812-1815.
Algandaby, M.M. and El-Darier, S.M. 2016. Management of the noxious weed; Medicago polymorpha L. via allelopathy of some medicinal plants from Taif region, Saudi Arabia. Saudi Journal of Biological Sciences. 25(7):1339-1347.
Bulmera, C. Margaritisa, A. and Xenocostasb, A. 2012. Production and characterization of novel chitosan nanoparticles for controlled release of rHu-Erythropoietin. Biochemical Engineering Journal. 68: 61-69.
Chen, H. and Yada, R. 2011. Nanotechnologies in agriculture: New tools for sustainable development. Food Science and Technology. 22(11):585-594.
Cheung, R. Ng, T. Wong, J. and Chan, W. 2015. Chitosan: an update on potential biomedical and pharmaceutical application. Marine drugs. 13(8):5156-5186.
Chon, S.U. Jang, H.G. Kim, D.K. Kim, Y.M. Boo, H.O. Kim, Y.J. 2005. Allopathic potential in Convulvulus arvensis L. plants. Scientia Horticulturae. 106:309-317.
De Arruda, I.N.Q. Pereira, V.A. Stefani, R. 2017. Application of chitosan matrix for delivery of rutin. Journal of the Iranian Chemical Society. 14(3):561-566.
Delafuente, E.B. Suarez, S.A. and Ghersa, C.M. 2006. Soybean weed community composition and richness between 1995 and 2003 in the Rolling Pampas (Argentina). Agriculture Ecosystem and Environment. 115: 229-236.
Ehlers, B.K. and Thompson, J. 2004. Do co-occurring plant species adapt to one another? The response of Bromus erectus to the presence of different Thymus vulgaris chemotypes. Oecologia. 141:511 - 8.
Fitter, A. 2003. Making allelopathy respectable. Science. 301:1337-1338.
Gao, P. Nie, X. Zou, M. Shi, Y. and Cheng, G. 2011. Recent advances in materials for extended-release antibiotic delivery system, The Journal of antibiotics. 64:625- 634.
Ghadi, A. Mahjoub, S. Tabandeh, F. and Talebnia, F. 2014. Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering. Caspian Journal of Internal Medicine. 5(3): 156-161.
Hatami hampa, A. Javanmard, A. Alebrahim, M.T. and Sofalian, O. 2017. Allelopathic Effects of Sorghum (Sorghum bicolor L.) and Russian Knapweed (Acroptilon repens L.) Aqueous Extract on Seed Germination Indices and Enzyme Activity of Some Field Crops and Weeds. Journal of Plant Protection. 31(4):676-689.
Jabran, k. Mahajan, G. Sardana, V. and Chauhan, B.S. 2015. Allelopathy for weed control in agricultural systems. Crop Protection. 72: 57-65.
Kang, G.Q. Wan, F.H. Liu, X. and Guo, L. 2008. Influence of two allelochemicals from Ageratina adenophora Sprengel on ABA, IAA and ZR contents in roots of upland rice seedlings. Allelopathy Journal. 21:253-262.
Kato-Noguchi, H. 2011. Barnyard grass-induced rice Allelopathy and momilactone B. Journal Plant Physiology. 168:1016–1020.
Khan, T.D. Chung, I.M. Tawata, S. and Xuan, T.D. 2006. Weed suppression by Passi flora edulis and its potential allelochemicals. Weed research. 46:296-303.
Khot, L.R. Sankaran, S. Maja, M. Ehsani, R. and Schuster, E.W. 2012. Applications of nanomaterials in agricultural production in and crop protection: A review. crop Protection. 35:64-70.
Kohansal, A. Mojab, M. Kohnavard, F. Rustanejad, M.R. Mandust, M. and Rezaei, M. 2009. Allelopathic effects of aqueous extract of aboveground and underground Acroptilon repens on germination and growth of wheat plant. The second regional conference on agricultural science and food industry (Fasa). P. 1-9.
Mehdizadeh, M. and Mushtaq, W. 2019. Weed Control by Allelopathic Compounds from Different Plants: A Bioherbicide Approach.
Mousavi, S.K. Zand, E. and Saremi, H. 2012. Physiological Function and Application of Herbicide. University of Zanjan Press. p 286.
Mubeen, K. Nadeem, M.A. Tanveer, A. and Zahir, Z.A. 2012. Allelopathic effects of sorghum and sunflower water extraction germination and seedling growth of rice (Oryza sativa L.) and three weed species. Journal of Animal and Plant Sciences. 22(3):738-746.
Nabati Souha, L. Alebrahim, M.T. Habibi Yangjeh, A. Zangoueinejad, R. and Samadi kalkhoran, E. 2020. Inhibitory effect of Russian knapweed (Acroptilon repens L.) as a biological herbicide on germination and growth indices of Wild mustard (Sinapis arvensis L.). 10th National Conference on Agriculture and Sustainable Natural Resources.
Nabati Souha, L. Alebrahim, M.T. Habibi Yangjeh, A. Zangoueinejad, R. and Samadi kalkhoran, E. 2020. The inhibitory effect of Russian knapweed (Acroptilon repens L.) as a biological herbicide on germination and growth indices of Wild oats (Avena fatua L.). 10th National Conference on Agriculture and Sustainable Natural Resources.
Navarro, E. Baun, A. Behra, R. Hartmann, N. Filser, J. Miao, A. Quigg, A. Santschi, P.H. and Sigg, L. 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 17(5):372-386.
Norouzi, A. Yavari, I. Chalabian, F. 2006. chemical constituents and antimicrobial activities of the essential oil of Acroptilon repens (L.) dc. Flavour and Fragrance Journal. 21(2):247 -249.
Olorunmiye, P.M. Egberongbe, K. Adeoye, R.P.O. Alamu, O.O. and Taiwo, S.T. 2011. Weed species composition of citrus-based cropping system at National Horticultural Research Institute Ibadan, Nigria. Agri. and Bio. of North Ame. 2(3):529-537.
Oroji, K. Khazaee, H.R. Rashed Mohassel, M.H. Qorbani, R. and Azizi, M. 2008. Investigating allelopathic effect of sunflower (Helianthus annuus) on red root pigweed (Amaranthus retroflexus) and common white goosefoot (Chenopodium album) seed germination and growth. Plant Conservation journal. 25:245-251.
Ozpinar, H. Dag, S. and Yigit, E. 2017. allelopathic effects of benzoic acid, salicylic acid and leaf extract of Persica vulgaris Mill. (Rosaceae). South African Journal of Botany. 108:102-109.
Quintana, N. Weir, T.L. Du, J. Brockling, C.D. Rieder, J.P. Stermitz, F.R. Pasckke, M.W. and Vivanco, J.M. 2008. Phytotoxic polyacetylenes from roots of Russian knapweed (Acroptilon repens (L.) DC.). Phytochemistry. 69(14):2572–2578.
Rampino, A. Borgogna, M. Blasi, P. Bellicha, B. and Secaro, A. 2013. Chitosan nanoparticles: Preparation, size evolution and stability, International Journal of Pharmaceutics. 445(1-2):219-228.
Shahbazi, M.A. Hamidi, M. and Mohammadi Samani, S. 2013. Preparation, optimization, and in-vitro/in-vivo/ex-vivo characterization of chitosan-heparin nanoparticles: drug-induced gelation. Journal of Pharmacy and pharmacology. 65(8):1118–1133.
Shang, Z.H. and Xu, S.G. 2012. Allelopathic testing of pedicularis kansuensis (Scrophulariaceae) on seed Sprengel on ABA, IAA and ZR contents in roots of upland rice seedlings. Allelopathy Journal. 21:253-262.
Stermitz, F.R. Bais, H.P. Foderaro, T.A. and Vivanco, J.M. 2003. 7, 8-Benzoflavone: a Phytotoxin from root exudates of invasive Russsian Knapweed. Phytochemistry. 64(2):493-497.
Sturm, D.J. Kunz, C. and Grehards, R. 2016. Inhibitory effects of cover mulch on germination and growth of Stellaria media (L.) Vill. Chenopodium album L. and Matricaria chamomilla L. Crop Protection. 90:121-130.
Thi, H.L. Lan, P.T.P. Chin, D.V. and Noguchi, H. 2008. Allelopathic potential of cucumber (Cucumis sativus) on barnyard grass (Echinochloa crus-galli). Weed Biology and Manangment. 8:129-132.
Winkler, A.J. Dominguez-Nuñez, J.A. Aranaz, I. Poza- Carrión, C. Ramonell, K. and Somerville, S. 2017. Short-chain chitin oligomers: Promoters of plant growth. Marine drugs.15(2):40.
Yarnia, M. Farajzadeh Memari Tabrizi, E. Ahmadzadeh, V. and Nobari, N. 2010. Allelopathic Effects of Field Binweed (Convolvulus arvensis L.) Extract and Residuals on Wheat (Triticum aestivum L.). Journal of Agricultural Science and Sustainable Production. 20(1):153-167. | ||
آمار تعداد مشاهده مقاله: 81 تعداد دریافت فایل اصل مقاله: 130 |