
 

Majlesi Journal of Electrical Engineering 
Vol. 18, No. 1, March 2024 

 

                                                                      

 

 

©The Author(s) 2024 

Paper type: Review paper  

https://doi.org/10.30486/mjee.2024.1986441.1136 

Received: 26 October 2023; revised: 29 November 2023; accepted: 18 January 2024; published: 1 March 2024 

How to cite this paper: P. Thottempudi, V. Kumar, and N. Deevi, “EEG Artifact Removal Strategies for BCI Applications: A 

Survey”, Majlesi J. Electr. Eng., Vol. 18, No. 1, pp. 187-197, 2024. 
 

 

EEG Artifact Removal Strategies for BCI Applications: A 
Survey 

 
Pardhu Thottempudi1, Vijay Kumar2, Nagesh Deevi1  

1- Department of Electronics and Communications Engineering, BVRIT HYDERABAD College of Engineering for 
Women, Hyderabad, India. 

Email: Pardhu.t@bvrithyderabad.edu.in (Corresponding author) , nagesh.d@bvrithyderabad.edu.in 
2- School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vellore, India.  

Email:vijaykumar@vit.ac.in 

 

 
 

1.  INTRODUCTION 

1.1.  Signal Capturing Block 
     The electrophysiological signals used by the BCI are captured by the Signal Capturing Module. The brain is the 

source of these signals [7]. Both invasive and non-invasive methods have been developed for BCI research, but invasive 

methods like electrocardiograms (ECoG) and single-neuron recordings have proven more effective [7,8]. Comparison 

of signal quality with other non-invasive brain imaging techniques, including magnetoencephalography, positron 

emission tomography, functional magnetic resonance imaging, near-infrared spectroscopy, and fMRI [8]. The acquired 

signals are amplified to increase their strength before transmission. Before any computer application, they must be 

encoded. 

 
1.2.  Signal Capturing Block 
As illustrated in Fig. 1, preprocessing of EEG signals is an essential first step in any brain-computer interface-based 

application. The signal is cleaned up by subtracting out artifacts like ECG, EOG, and EMG measurements, filtering out 

noise, and resampling it to meet detector input specifications. 
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Fig. 1. Stage of the Signal Processing in BCI. 

 

      Pre-processing is often done to increase the recorded data's signal to noise ratio before processing. Artifacts in the 

EEG signal can be eliminated by filtering out the electrical activity produced by head and eye muscle contractions. In 

order to remove artifacts from an EEG recording, a preprocessing of the signal is required. When properly implemented, 

BCI systems can Accurate categorization relies heavily on the EEG signal being properly preprocessed. The EEG signal 

can be cleaned up and made ready for analysis by doing some preliminary processing. BSS, which stands for "blind 

source separation," is a popular pre-processing method [9].Artifacts are frequently observed in many forms of EEG 

signals, as shown in Table 1. 

 

Table 1. Different artifacts arised during signal acquisition of EEG signal processing. 

S.No  Artifacts  Generated By The Source  Frequency  Voltage 

Level  

Shape /Structure  

1  Ocular 

Artifacts (EOG)  

Eye  0.3 -3HZ  80-100mv  Delta waves  

2  EMG  Jaw movements  4-6hz  0-10mv  Theta waves  

3  ECG  Heart or cardiac movement  0-150hz  1-10mv  Beta and gamma 

waves  

4  50/60 HZ 

artifacts(power 

line artifacts)  

Power line attached  50/60 hz  high  Beta and gamma 

waves  

5  Sweat artifacts  sweat  0.25-0.5 hz  300 micro 

volts  

Delta waves  

6  Electrode pop  Electrodes attached to  scalp  0-30hz  20 mv  Shape appeared 

different from actual 

EEG signal  

7  Physical 

movement 

artifacts(motion 

artifacts)  

Body movements,head 

movement,jaw movement etc…  

Very low  high  Shape appeared 

different from actual 

EEG signal  

8  Electronic 

gadgets artifacts  

Mobile,laptop,personal 

computer etc..  

Very low  high  Shape appeared 

different from actual 

EEG signal  
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2.  LITERATURE REVIEW 

     The below Table.2 compare the latest artifacts removal techniques in various parameters such as type of artifacts that 

can able to eliminate in EEG signal processing which is mainly related to BCI applications ,novelty in the algorithm or 

method that chosen to mitigate artifacts ,the data that can operated on which the proposed method can best suited (real 

&simulated ) so that we can estimate practical implementation, and also here discussed the challenges or limitations 

faced to practical viability and commented or given remarks about each and every system of implementation. The above 

table contain different artifacts removal techniques EOG, ECG, EMG, Physical movement artifacts(motion artifacts)  

etc but mainly focused on ocular or Eye Blink (EB) artifacts because the EB artifacts are main cause of error or distortion 

in EEG signal pre-processing.  

 

Table 2.  Comparison of various artifacts removal techniques 

Author Type 

of artifact 

Method Algorithm 

used 

Novelty Data Challenges/ 

limitations 

Comment

s 

Çınar, 

Salim(2021)[22

] 

Only 

Eye blink 

(EOG) 

Independent 

Component 

Analysis (ICA), 

Kurtosis, K-

means, Modified 

Z-Score (MZS) 

and Adaptive 

Noise Canceller 

(ANC). 

The classical 

Least Mean 

Squares (LMS) 

and 

Normalized 

LMS (NLMS) 

algorithms 

The 

proposed 

system does 

require an 

external 

electrode for 

measuring 

EOG Signals 

Real 

&simulated 

It is only 

applicable to  

this method is 

that ocular 

artifacts and 

other artifacts 

present it is not 

efficient 

method and   

When 

conducting the 

subtraction 

process, the 

disadvantage is 

the relevant 

EEG signals 

can be erased. 

The 

proposed 

method has 

high 

performance 

in both 

datasets & 

comfortable 

measurement 

for patients   

during more 

time EEG 

recordings. 

Cao, 

Jiuwen.et al. 

(2021) [24] 

Only 

Eye blink 

(EOG 

Gaussian 

mixture model 

(GMM) 

cascaded 

hybrid 

thresholding 

method and the 

GMM 

algorithm 

No false 

positives were 

found in the 

detection of 

eye blink 

artifacts using 

the suggested 

approach. 

Real and 

simulated 

An 

increased 

likelihood of 

missing 

artifacts caused 

by eye blinks 

when 

employing a 

high threshold. 

In terms 

of precision 

and F1 score, 

the proposed 

approach is 

more 

reliable. 

Egambaram

, 

Ashvaany.etal. 

[26] 

Only 

Eye blink 

(EOG 

FastEMD-

CCA and 

FastCCA 

It is 

proposed to use 

a combination 

of modified 

Empirical 

Mode 

Decomposition 

and Canonical 

Correlation 

Analysis to 

perform 

unsupervised 

eye blink 

artifact 

detection 

(eADA). 

More than 

97% Removal 

Accuracy and 

an average of 

10-13ms 

removal speed 

simulate

d 

The 

artifact-free 

EEG samples 

showed 

negligible 

variation. 

Eyeblink 

artifacts can 

be effectively 

removed 

online with 

minimal 

neural 

distortion. 
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Borowicz, 

Adam. [27] 

Only 

Eye blink 

(EOG 

independent 

component 

analysis (ICA) 

and  principles of 

regression 

analysis 

multichann

el Wiener filter 

(MWF) and a 

small subset of 

the frontal 

electrodes 

When 

compared to 

the ICA 

approach, the 

suggested 

algorithm is 

more 

straightforwar

d. Real-time 

systems can 

benefit more 

from it, and 

that seems to 

be a crucial 

factor in BCI 

research and 

development. 

Real and 

simulated 

utilizing 

cutting-edge 

multichannel 

linear filters, 

enhanced off-

line 

implementatio

n, and 

expanding the 

suggested 

method's 

applicability to 

additional 

types of 

biomedical 

data. 

When 

compared to 

the state-of-

the-art 

method, the 

new 

methodology 

is more 

suitable to 

real-time 

systems. 

Zhou, 

Weidong, and 

Jean Gotman 

[28] 

Only 

Eye blink 

(EOG 

ICA method Independen

t Component 

Analysis (ICA) 

combining 

the EEG dipole 

model 

The ICA 

algorithm uses 

few 

computational 

resources. 

Without 

requiring 

access to a 

database of 

reference 

artifacts, it can 

separate the 

EEG from the 

noise. 

 

Real and 

simulated 

The 

frequency 

distributions of 

slow waves and 

visual artifacts 

are very 

similar. 

This method 

was 

validated for 

its ability to 

automatically 

filter out 

EEG 

aberrations 

attributable 

to the eyes. 

 

. Sreeja, S. 

R., et al [29] 

Mainl

y  Eye 

blink 

(EOG) & 

also used 

for other 

artifacts 

removal 

morphologic

al component 

analysis (MCA) 

and K-SVD 

MCA and K-

SVD are two 

sparsity-based 

approaches that 

can be used to 

eliminate 

artifacts. 

 

The 

suggested 

sparsity-based 

approaches can 

eliminate EB 

artifacts in an 

EEG signal 

without the use 

of any 

specialized 

equipment or 

additional 

channels for 

the EOG. 

Real and 

simulated 

One major 

drawback is 

that it 

necessitates the 

use of 

extraocular 

channels in 

order to capture 

ocular artifacts. 

It is 

applicable to 

the 

elimination 

of other 

artifacts in 

raw EEG 

data as well. 

He, Ping, G. 

Wilson, and C. 

Russell [30] 

ocular 

artifacts 

 

adaptive 

filtering 

recursive 

least squares 

algorithm 

The non-

stationary 

component of 

EOG signals is 

monitored 

using this 

technique. 

real The 

approach does 

not scale up to 

situations with 

four or more 

reference 

inputs. 

automatically 

adjust to a 

new 

environment 

without 

sacrificing 

performance 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/electroencephalography
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. Chintala, 

Sridhar, and 

Jaisingh 

Thangaraj[32] 

ocular 

artifacts 

 

Robust 

Variable 

Forgetting 

Factor (RVFF) 

and Recursive 

Least Square 

(RLS) 

RVFF-RLS 

based 

algorithm 

The non-

stationary 

EOG signals 

are followed 

and estimated 

by the 

algorithm, and 

then the 

subtraction 

approach is 

used to acquire 

clean EEG 

data. 

Real and 

simulated 

Non-

stationary 

conditions are 

detrimental to 

tracking 

performance. 

The 

proposed 

method 

exhibits the 

lowest 

possible 

mean square 

error in a 

time-varying 

condition. 

Yadav, 

Anchal, and 

Mahipal Singh 

Choudhry. [33] 

ocular 

artifacts 

 

EEMD & 

SCICA 

Kurtosis and 

mMSE 

Ensemble 

Empirical 

Mode 

Decomposition 

(EEMD) and 

Spatial 

Constraint 

Independent 

Component 

Analysis 

(SCICA) 

To counter 

act EMD's 

mode mixing 

and aliasing, 

EEMD is 

employed. 

Real EEMD's 

amplitude-

reduction 

problem 

Better 

constraints 

on ICA and 

wavelet 

augmented 

independent 

component 

analysis can 

boost 

performance 

even further. 

 

Gajbhiye, 

Pranjali, Rajesh 

Kumar 

Tripathy      [34] 

ocular 

artifacts 

 

the FBSE-EWT 

based rhythm 

separation 

technique 

. The 

Fourier-Bessel 

series 

expansion 

based empirical 

wavelet 

transform 

(FBSEEWT 

The approach 

can remove 

ocular artifact 

from an EEG 

recording 

without the 

use of a 

reference 

signal. 

 

Real The 

blending of 

modes as 

various 

rhythmic EEG 

data appears 

Compared to 

existing 

methods, the 

proposed 

approach 

improves 

performance 

while 

requiring 

fewer 

resources.  

When 

compared to 

other 

methods, 

alpha wave's 

MAE in PSD 

value was 

0.029 on 

average. 

Islam, Md 

Kafiul, Parviz 

Ghorbanzadeh, 

and Amir 

Rastegarnia. 

[35] 

All type 

of 

artifacts 

removal( 

ECG, 

EOG, 

EMG, 

etc.) 

Entropy, 

kurtosis, 

skewness, 

periodic 

waveform index 

stationary 

wavelet 

transform 

based artifact 

removal 

The outcomes 

demonstrate 

that the 

suggested 

reduction of 

artifacts 

significantly 

increases BCI 

output. 

Real & 

simulated 

The 

proposed 

method still 

requires work 

in terms of its 

discrimination 

abilities and its 

capacity to 

eliminate 

artifacts. 

The 

proposed 

approach 

utilizes four 

statistical 

techniques to 

plot the 

improbability 

of various 

artifacts. 



Majlesi Journal of Electrical Engineering                                              Vol. 18, No. 1, March 2024 
 

192 

 

Lee, 

Young-Eun, 

No-Sang 

Kwak, and 

Seong-Whan 

Lee [36] 

Movemen

t artifacts 

ICA with online 

learning 

constrained 

independent 

component 

analysis with 

online learning 

(cIOL) 

Examining the 

impact of 

noise 

reduction in 

the temporal 

and frequency 

domains 

through a 

quantitative 

evaluation of 

artifact 

removal 

approaches 

utilizing two 

BCI paradigms 

(ERP and 

SSVEP). 

 

Real & 

simulated 

Timeframes 

for using the 

approach are 

constrained by 

the occurrence 

of gait 

events. Anothe

r issue is that 

there isn't a 

single adequate 

template to 

represent 

artifacts' wide 

variety. 

 

Developed a 

rough 

estimate of 

the 

movement 

artifacts 

using the 

EEG data. 

Finally, 

artifact-free 

EEG signals 

were 

recovered 

using 

weights that 

were updated 

using online 

learning. 

 

Song, 

YoungJae, and 

Francisco 

Sepulveda [37] 

EMG 

artifacts 

ICA, PCA, and 

BSS-CCA 

EMG-CCh Reduce 

ambiguity and 

enhance 

discrimination 

between 

classes. 

simulate

d 

Methodologica

l Constraints 

An excessive 

amount of 

class-

dependent 

EMG can 

persist even in 

a channel with 

reduced CRC 

during resting 

conditions. 

 

Finally, the 

proposed 

strategy 

improved 

class 

separation 

(when 

compared to 

prior 

methods) 

using both 

training and 

test data.  

The data set 

developed 

for the BCI 

competition 

is used in a 

wide variety 

of 

applications. 

This strategy 

can be used 

independentl

y or in 

tandem with 

other 

approaches 

of managing 

artifacts. 

 

 

     According to the data in the table above, the most common techniques used to clean up EEG signals include Blind 

Source Separation (BSS), Principal Component Analysis (PCA), Canonical Correlation Analysis (CCA), Discrete 

Wavelet Transform (DWT), Stationary Wavelet Transform (SWT), Empirical Mode Decomposition (EMD), Ensemble 

Empirical Mode Decomposition (EEMD), Wavelet Transform, and Adaptive Filtering. The performance parameters, 
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including the correlation co-efficient, Mean Square Error, Power Spectral Density, Signal-to-Noise Ratio, and Execution 

Speed and Complexity, are all improved when the preprocessing stage is enhanced. 

     The above table details a discussion of advanced artifact removal techniques for the examples given, including those 

by nar, Salim(2021), who discussed and implemented a new algorithm, the classical Least Mean Squares (LMS) 

algorithm, and the Normalized LMS algorithm (using Independent Component Analysis, Kurtosis, K-means, a modified 

Z-score, and an adaptive noise canceler) for removing eye blink artifacts from both real and simulated data. The system 

has the limitation of only being able to deal with ocular artifacts, making it a less-than-efficient method; the subtraction 

process can result in the loss of important EEG signals; and in another paper by Borowicz and Adam, they discussed 

independent component analysis (ICA) and regression analysis principles and implemented them using a multichannel 

Wiener filter; and in this study, they used a subset of frontal electrodes to detect ICA. It also works great with real-time 

systems, which is apparently crucial for BCI research. Additionally, a novel concept was implemented by Zhou, 

Weidong, and Jean Gotman using Independent Component Analysis in combination with the EEG dipole model, with a 

primary focus on ocular artifact elimination. This technique was found to be effective in automatically eradicating ocular 

artifacts from the EEG. Song, YoungJae, and Francisco Sepulveda also implemented the system using ICA, in addition 

to PCA, and BSS-CCA to remove EMG artifacts by a novel technique called EMG-cch and best suited for use along 

with the other techniques the data only implemented on simulation results. 

     Genetic algorithm (GA), a technique proposed by Trigui, Omar, et al., decreases the RMSE between unprocessed 

and processed EEG data. Using only simulated data and a small number of channels, the proposed approach nevertheless 

achieves satisfactory results. 

Each and every eye blink artifact was correctly identified by the proposed method by Cao, Jiuwen.etal, with zero false 

positives. 

     The method developed by Egambaram, Ashvaany, et al.  CFast EMD-CCA and Fast CCA  introduced a method for 

detecting eye blink artifacts without human supervision by combining a variant of Empirical Mode Decomposition with 

Canonical Correlation Analysis. Artifact-free EEG segments showed hardly any distortion, with an accuracy of more 

than 97% and a removal speed of 10-13 ms, on average. Artifacts caused by an eyeblink can be corrected online with 

minimal neural distortion. 

     To eliminate EB artifacts from the EEG signal, Sreeja, S. R., et al. suggested a method known as K-SVD with 

morphological component analysis. Both of these methods are sparsity-based methodologies that work on both real and 

simulated data without the need for channel information, parameter tweaking (such as thresholding), or additional 

hardware/EEG channels. 

     Adaptive filtering for ocular artifacts using recursive least squares was given by He, Ping, G. Wilson, and C. Russell. 

When applied to real-world data, this method follows the dynamic components of EOG signals. It cannot be generalized 

to situations involving three or more reference inputs, but it can be automatically adapted to a new setting without 

compromising its efficacy. 

     Using the Robust Variable Forgetting Factor (RVFF) and Recursive Least Square (RLS), Chintala, Sridhar, and 

Jaisingh Thangaraj solved the problem of ocular artifacts. This method estimates and follows non-stationary EOG 

signals so that pure EEG signals can be extracted from both real and simulated data. In unstable conditions, tracking 

accuracy decreases. The proposed method achieves the smallest mean square error in a dynamic environment. 

Yadav, Anchal, and Mahipal Singh Choudhry compute Kurtosis and mean squared error (mSSE) using Ensemble 

Empirical Mode Decomposition (EEMD) and Spatial Constraint Independent Component Analysis (SCICA). EEMD is 

also used to overcome the mode mixing and aliasing problem of EMD, which is typically performed on Real data. 

Improving the constraints used in ICA and wavelet-enhanced independent component analysis can further boost 

performance. In order to get rid of ocular artifacts, Gajbhiye, Pranjali, and Rajesh Kumar Tripathy presented a rhythm 

separation technique based on FBSE-EWT. Ocular artifacts can be removed from an EEG signal using the Fourier-

Bessel series expansion based empirical wavelet transform (FBSEEWT) method, which has been extensively validated 

for real-valued data and does not require a reference signal. When many modes of EEG rhythm information appear, this 

phenomenon is referred to as "mode mixing." The suggested method outperforms state-of-the-art alternatives, with a 

mean absolute error (MAE) in peak signal-to-noise ratio (PSR) of only 0.029 for rhythm. 

     Using entropy, kurtosis, skewness, and the stationary wavelet transform, Islam, Md. Kafiul, Parviz Ghorbanzadeh, 

and Amir Rastegarnia proposed a method for eliminating artifacts across all modalities. When evaluated with real and 

simulated data, the results reveal that the proposed artefact removal significantly improves BCI output. The proposed 

technique still needs better discrimination capacity and has weak ability to eliminate genuine artefacts. The suggested 

method for mapping artificial probability uses four statistical parameters. 

 

3.  CONCLUSION 

The work is mostly considered in the preprocessing step of the overall BCI systems. The goal of the pre-processing 
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stage in a BCI applications is to decrease artifacts in the EEG signal generated by the numerous sources. Based on the 

findings in the available literature, this report summarized the key techniques, Some of the techniques uses exclusively 

used for removing artifacts which is related to eye blink (EOG)artifacts, ECG ,EMG and all other movement related 

artifacts here by go through the different research articles basically uses different algorithams separately or combinely 

that reveals the output without artifacts in EEG signal processing which combined with BCI related applications either 

it may be cursor movement,wheel chair movement,video gaming,bio medical etc. Some methods, such as adaptive 

filtering, Morphological Component Analysis (MCA) and K-SVD and Entropy, kurtosis, skewness, periodic waveform 

index, remove artifacts with high precision, which works on both real and simulated data or either of the one , however 

methods with high computational cost may not be suited for online applications. As a result, there is no best option for 

removing all forms of artifacts. So, one of the future goals of effective artifact attenuation is to provide an application-

specific methodology with improved time and precision, efficiency.                          
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