تعداد نشریات | 418 |
تعداد شمارهها | 10,003 |
تعداد مقالات | 83,616 |
تعداد مشاهده مقاله | 78,253,187 |
تعداد دریافت فایل اصل مقاله | 55,307,646 |
Jellyfish search optimizer algorithm based multiple distributed generation placements | ||
Majlesi Journal of Electrical Engineering | ||
دوره 18، شماره 3، آذر 2024، صفحه 1-13 اصل مقاله (780.34 K) | ||
نوع مقاله: Reseach Article | ||
شناسه دیجیتال (DOI): 10.57647/j.mjee.2024.180347 | ||
چکیده | ||
The efficient and economical operation of a distribution power network (DPN) has been essential in recent times, considering the energy crisis and shortage of fossil fuels. A DPN is known to be efficient and economical if power losses are minimal, the voltage drop along the lines is less, and stability is maintained during different operating conditions. However, due to the crisis for primary fuel, all DPNs including radial power distribution networks (RPDN) are operated at threshold level. This has led to higher power losses, more voltage drops, and stability issues in RDPN. Hence, to reduce the power losses and voltage deviation and improve the stability of the power system network, distributed generation (DG) units are optimally allocated into radial DPN. In this study, an optimization technique using Jellyfish search optimizer (JSO) algorithm is proposed to optimize multiple DGs into RDPN to minimize a multi-objective function corresponds to real power loss (RPL) minimization, voltage stability (VS) enhancement, and total operating cost (TOC) minimization. The performance of the proposed technique is evaluated for multiple type I and type III DGs placement on an IEEE standard 33-bus RDPN. Besides, the effectiveness of the proposed technique is investigated considering a nominal and peak power demand. The efficacy of the research outcome of the suggested JSO approach has been compared with the outcome of other optimization algorithms presented in the literature. The comparison exemplifies that JSO gives more promising outcomes than other algorithms by delivering the least real power losses and better voltage profile enhancement at minimum operating cost. | ||
کلیدواژهها | ||
Radial distribution power network؛ Distributed generation؛ Power losses؛ Voltage stability؛ Total operating cost | ||
مراجع | ||
[1] S. H. Lee and J. J. Grainger. “Optimum placement of fixed and switched capacitors on primary distribution feeders.”. IEEE Trans. Power Appl. Syst., 100(1):pp. 345–352, 1981. DOI: https://doi.org/10.1109/TPAS.1981.316862. [2] W. EI-hattam and M. M. A. Salma. “Distributed generation technologies, definitions and benefits.”. Electr. Power Syst. Res., 71(2):pp. 119–128, 2004. DOI: https://doi.org/10.1016/j.epsr.2004.01.006. [3] T. Ackermann, G. Andersson, and L. Soder. “Distributed generation: a definition.”. Electr. Power Syst. Res., 57:pp. 195–204, 2001. DOI: https://doi.org/10.1016/S0378-7796(01)00101-8. [4] Cigre. “Impact of increasing contribution of dispersed generation on the power system.”. CIGRE study committee, (37), 1998. [5] D. Q. Hung, N. Mithulananthan, and R. C. Bansal. “Analytical expressions for dg allocation in primary distribution networks.”. IEEE Trans. Energy Convers, page pp. 814–820, 2010. DOI: https://doi.org/10.1109/TEC.2010.2044414. [6] D. K. Rajkumar Viral and A. Khatod. “Analytical approach for sizing and siting of dgs in balanced radial distribution networks for loss minimization.”. Int. J. Electr. Power Energy Syst., 67:pp. 191–201, 2015. DOI: https://doi.org/10.1016/j.ijepes.2014.11.017. [7] V. V. S. N. Murty and Ashwani Kumar. “Optimal placement of dg in radial distribution systems based on new voltage stability index under load growth.”. Int. J. Electr. Power Energy Syst., 69:pp. 246–256, 2015. DOI: https://doi.org/10.1016/j.ijepes.2014.12.080. [8] M. H. Moradi and M. Abedini. “A combination of genetic and particle swarm optimization for optimal dg location and sizing in distribution system.”. International Journal of Electrical Power and Energy Systems, 34(1):pp. 66–74, 2012. DOI: https://doi.org/10.1016/j.ijepes.2011.08.023. [9] D. B. Prakash and C. Lakshminarayana. “Optimal siting of capacitors in radial distribution network using whale optimization algorithm.”. Alexandria Engg. J, 56:pp. 499–509, 2017. DOI: https://doi.org/10.1016/j.aej.2016.10.002. [10] D. B. Prakash and C. Lakshminarayana. “Multiple dg placements in radial distribution system for multi objectives using whale optimization algorithm.”. Alexandria Engineering Journal, 57(4):pp. 2797–2806, 2018. DOI: https://doi.org/10.1016/j.aej.2017.11.003. [11] A. A. Saleh, A. A. A. Mohamed, and A. Hemeida. “Optimal allocation of distributed generations and capacitor using multi-objective different optimization techniques.”. in Proc. of the 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), page pp. 377–383, 2019. DOI: https://doi.org/10.1109/ITCE.2019.8646426. [12] U. Sultana, Azhhar B. Khairuddin, A. S. Mokhtar, and N. Zareen. “Grey wolf optimizer based placement and sizing of multiple distributed generation in the distribution system.”. Energy, 111:pp. 525–536, 2016. DOI: https://doi.org/10.1016/j.energy.2016.05.128. [13] Chandrasekhar Yammani, Sydulu Maheshwarapu, and Sailaja Kumari Matam. “A multi-objective shuffled bat algorithm for optimal placement and sizing of multi distributed generations with different load models.”. Int. J. Electr. Power Energy Syst, 79:pp. 120–131, 2016. DOI: https://doi.org/10.1016/j.ijepes.2016.01.003. [14] Bikash Das, V. Mukherjee, and Debapriya Das. “Dg placement in radial distribution network by symbiotic organisms search algorithm for real power loss minimization.”. Appl. Soft Comput., 49:pp. 920–936, 2016. DOI: https://doi.org/10.1016/j.asoc.2016.09.015. [15] E. S. Ali, S. M. Abd-Elazim, and A. Y. Abdelaziz. “Improved harmony algorithm and power loss index for optimal locations and sizing of capacitors in radial distribution systems.”. Int. J. Electr. Power Energy Syst., 80:pp. 252–263, 2016. DOI: https://doi.org/10.1016/j.ijepes.2015.11.085. [16] A. Y. Abdelaziz, E. S. Ali, and S. M. Abd-Elazim. “Flower pollination algorithm and loss sensitivity factors for optimal sizing and placement of capacitors in radial distribution systems.”. Int. J. Electr. Power Energy Syst., 78:pp. 207–214, 2016. DOI: https://doi.org/10.1016/j.ijepes.2015.11.059. [17] Injeti Sathish Kumar and N. Prema Kumar. “A novel approach to identity optimal access point and capacity of multiple dgs in a small, medium, and large scale radial distribution systems.”. Electr. Power Energy Syst, 45:pp. 142–151, 2013. DOI: https://doi.org/10.1016/j.ijepes.2012.08.043. [18] A. M. Imran and M. Kowsalya. “Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization.”. Swarm Evol. Comput., 15:pp. 58–65, 2014. DOI: https://doi.org/10.1016/j.swevo.2013.12.001. [19] B. Nasreddine, B. Fethi, H. Yassine, H. Imane, and B. Riyadh. “Optimal sizing and placement of distributed generation with short-circuit analysis using a combined technique based on modified pso and etap.”. 2024 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC), pages pp. 1–6, 2024. DOI: https://doi.org/10.1109/ICEEAC61226.2024.10576230.[20] S. Sultana and P. K. Roy. “Multi-objective quasi oppositional teaching learning based optimization for optimal location of distributed generator in radial distribution systems.”. International Journal of Electrical Power and Energy Systems, 63(1):pp. 534–545, 2014. DOI: https://doi.org/10.1016/j.ijepes.2014.06.031. [21] Usharani Raut and Sivkumar Mishra. “An improved sine–cosine algorithm for simultaneous network reconfiguration and dg allocation in power distribution systems.”. Applied Soft Computing, 92:pp. 106293, 2020. DOI: https://doi.org/10.1016/j.asoc.2020.106293. [22] S. Sultana and P. K. Roy. “Krill herd algorithm for optimal location of distributed generator in radial distribution system.”. Appl. Soft Comput., 40:pp. 391–404, 2016. DOI: https://doi.org/10.1016/j.asoc.2015.11.036. [23] Hoshang Qasim Awla, Shahab Wahhab Kareem, and Amin Salih Mohammed. “A comparative evaluation of bayesian networks structure learning using falcon optimization algorithm.”. International Journal of Interactive Multimedia and Artificial Intelligence, 8(2):pp. 81–87, 2023. DOI: https://doi.org/10.9781/ijimai.2023.01.004. [24] Francisco Garc´ıa, Helena Hernandez, Mar ´ ´ıa N. Moreno-Garc´ıa, Juan F. de Paz Santana, Vivian F. Lopez, and Javier Bajo. “ ´ Traffic optimization through waiting prediction and evolutive algorithms.”. International Journal of Interactive Multimedia and Artificial Intelligence, pages pp. 1–8, 2023. DOI: https://doi.org/10.9781/ijimai.2023.12.001. [25] J. S. Chou and D. N. Truong. “A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean.”. Applied Mathematics and Computation, 389:pp. 125535, 2021. DOI: https://doi.org/10.1016/j.amc.2020.125535. [26] M. Gandomkar, M. Vakilian, and M. Ehsan. “A genetic-based tabu search algorithm for optimal dg allocation in distribution networks.”. Electric Power Components and Systems, 33(12):pp. 1351–1362, 2005. DOI: https://doi.org/10.1080/15325000590964254. [27] K. Prakash and M. Sydulu. “Particle swarm optimization based capacitor placement on radial distribution systems.”. IEEE Power Engineering Society General Meeting, pages pp. 1–5, 2007. DOI: https://doi.org/10.1109/PES.2007.386149. [28] P. Kayal P and C. Chanda. “Placement of wind and solar based dgs in distribution system for power loss minimization and voltage stability improvement.”. International Journal of Electrical Power and Energy Systems, 53:pp. 795–809, 2013. DOI: https://doi.org/10.1016/j.ijepes.2013.05.047. [29] M. Khasanov, S. Kamel, C. Rahmann, and H. M. Hasanien. “Optimal distributed generation and battery energy storage units integration in distribution systems considering power generation uncertainty.”. IET Gener. Transm. Distrib., 15:pp. 3400–3422, 2021. DOI: https://doi.org/10.1049/gtd2.12230. [30] N. C. Sahoo and K. Prasad. “A fuzzy genetic approach for network reconfiguration to enhance voltage stability in radial distribution systems.”. Energy Conversion and Management, 47:pp. 3288–3306, 2006. DOI: https://doi.org/10.1016/j.enconman.2006.01.004. [31] A. Augugliaro, L. Dusonchet, S. Favuzza, M. G. Ippolito, and E. Riva Sanseverino. “A backward sweep method for power flow solution in distribution networks.”. International Journal of Electrical Power & Energy Systems, 32(4):pp. 1540–1544, 2014. DOI: https://doi.org/10.1016/j.ijepes.2009.09.007. | ||
آمار تعداد مشاهده مقاله: 39 تعداد دریافت فایل اصل مقاله: 78 |