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Abstract:
Power distribution networks have become more interested in Distributed Generations (DG) due to their
potential for reducing power loss and improving system dependability. Discovering the optimal site, size,
and reconfiguration strategy for a DG-based distribution network using a metaheuristic algorithm is the main
goal of this study. The multi-objective and multi-constrained feature of the Whale Optimization Algorithm
(WOA) makes it a useful optimization technique for network reconfiguration. In this paper, the forward-
backward load flow technique is employed due to its easy implementation, quick and reliable convergence.
The recommended approach is validated through two different test systems. Four different scenarios are
considered. Improvements in power loss reduction and voltage profile illustrate the effectiveness of the
proposed technique. The obtained results showed that DG allocation after network reconfiguration resulted in
a greater reduction of power losses and refinement of the voltage profile of the network. Also, a comparison
is employed with other optimization methods, it can be seen that the suggested method’s performance is
clearly superior, as shown by the numerical data. Losses were reduced by 67.8% and 63.21% on IEEE 33 and
69 bus systems, respectively, when using the suggested strategy. All the simulations are conducted through
MATLAB.
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1. Introduction

Electricity distribution is changing significantly as a result
of increasing environmental awareness and persistent en-
ergy demand. Distributed generations (DGs) and optimal
network reconfiguration are promising solutions to reduce
energy consumption while promoting sustainable energy
practices [1, 2]. DGs, such as solar photovoltaics, wind
turbines, and micro-generators, offer decentralized and re-
newable power sources that can considerably impact the
operational efficiency and environmental sustainability of
distribution networks [3–5]. Solving a mathematical optimi-
sation problem is necessary to ensure optimal allocation of
DG [6]. The electricity system’s capacity, efficiency, stabil-
ity, and long-term viability will all be greatly enhanced by
this. Benefits of optimisation approaches in energy manage-
ment for DG allocation include decreased costs and emis-
sions, increased system performance, greater utilisation of
energy resources, and optimisation of allocation processes
has been demonstrated to be beneficial [7, 8].
The optimisation approaches used to solve the DG allo-
cation and reconfiguration challenges are summarised in

Table 1. Three separate optimisation strategies—analytical,
metaheuristic, and hybrid—have been employed to address
these issues. Through extensive simulations, we show that
our method outperforms traditional techniques in terms of
convergence speed, active power loss reduction and voltage
profile improvement.
Classical approaches to optimization, such as gradient-
based methods and Linear Programming (LP), have been
applied to address the DG allocation problem [15–17]. How-
ever, these methods often suffer from limitations, such as
convergence to local optima and high computational over-
head. Metaheuristic algorithms, which can efficiently ex-
plore enormous solution spaces and identify near-optimal
solutions, have gained popularity as a means of overcoming
these obstacles. Among various metaheuristic algorithms,
the Whale Optimization Algorithm (WOA) has recently
emerged as a powerful optimization technique. WOA effi-
ciently finds the global optimum of an objective function
by simulating the surrounding prey and bubble-net feeding
methods used by humpback whales. Several optimization
issues in the scientific and technical fields have been suc-
cessfully solved using this approach.
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Table 1. An overview of various optimization methods for DG allocation and reconfiguration.

Study Year Objective Minimization
functions

Maximization
functions

Optimization
technique

Discussion on
reconfiguration

[9] 2023 Optimal allocation and
optimum sizing of DG Active power losses Voltage Profile,

Impedance

Genetic Algorithm
and Grey Wolf

Optimizer
Not considered

[10] 2023 Ideal sizing and
allocation of DG

Cost, Energy losses,
Voltage Deviation,

Annual economic loss

Voltage Profile,
System efficiency

Whale Optimization
Algorithm Not considered

[11] 2022 Optimal DG placement
Power Loss, Pollutant

Emission, Voltage
deviation, THD, Cost

Voltage Stability
Index (VSI) Firefly Algorithm Not considered

[12] 2022 Optimal DG size and
position Power Loss Reliability

Assessment

Wild Horse
Optimization

Algorithm
Not considered

[13] 2016 Optimal DG placement
and Reconfiguration Power Loss VSI Cuckoo Search

Algorithm Considered

[14] 2015 Network
Reconfiguration

Power Loss, voltage
deviation index – Cuckoo Search

Algorithm Considered

This
research – Optimal DG placement

and Reconfiguration Active Power Loss Voltage Profile,
System efficiency

Whale Optimization
Algorithm Considered

Optimizing DG placement and capacity, such as wind in a
distribution system, has been a hot topic for authors study-
ing the power system in recent years [9, 18–20]. Under the
assumption that DGs can be dispatched, the authors pre-
sented several methods for dealing with stressed systems.
For instance, in [21, 22], the authors used dispatchable DG
to minimize power line losses while increasing the voltage
stability margin. Authors in [23–25] formulated a three-
objective optimization problem with the goals of improving
voltage profile, minimizing power loss, and enhancing volt-
age stability. The authors considered optimal DG problems
for single and multiple DG sizing in [26]. The active power
flow in the distribution system was minimized using the
Genetic Algorithm (GA) approach.
An approach to PV generator allocation was detailed in [27]
that aimed to improve the voltage profile while reducing
power loss. The research focused solely on well-balanced
testing platforms. In contrast, the research in [28] looks
at how the integration of solar systems into the current in-
frastructure is affected by the effects of hourly changes in
load demand. The method being presented aims to mini-
mize power loss so that the PV systems can be deployed
efficiently across the system. The aforementioned method-
ology is only tested on the balanced test networks with the
most popular meta-heuristic algorithm, PSO. In order to
evaluate the hosting capability of DG sources within the
system and guarantee resilience in the face of different ad-
verse scenarios, the authors of [29] proposed a method. In
order to minimize losses, a hybrid data-driven strategy was
used to reconfigure the distribution system and allocate DG
units optimally in [30]. With high penetration of non-linear
loads, simultaneous allocation of DG units and shunt capac-
itors was carried out in [31]. Nevertheless, [30] and [31]
took into account the fact that there are a variety of DG units
and load models. The simultaneous allocation of multi-type
DGs was described in a generic analytical statement in [32].
The goal of this research is to use the WOA for both DG

allocation and network reconfiguration. With the combina-
tion of DG allocation and network reconfiguration within
the WOA, this study provides a comprehensive approach to
optimize distribution networks and foster the seamless inte-
gration of renewable energy sources. This study utilizes the
inherent strengths of the WOA for exploration and exploita-
tion, thus providing an effective and efficient alternative
compared to traditional optimization approaches. The IEEE
33 and 69 bus systems are utilized to validate the proposed
methodology. Based on the results of the study, DG alloca-
tion and network reconfiguration together improve voltage
profile and diminish power losses. The main objectives of
this research are as below:

• Consider optimal allocation problem and network re-
configuration in four different scenarios.

• Implement the WOA method to identify the best place-
ment and capacity of DG units, and optimize the
switching states of network elements.

• Perform extensive simulations on IEEE 33 and 69 bus
test systems to assess the effectiveness of the suggested
strategy.

• Compare the obtained results of this paper with further
optimization algorithm to verify the superiority of the
suggested technique.

The remainder of this paper is structured as follows: The ob-
jective function and restrictions of the optimization model
are described in Section 2. Section 3 provides an in-depth
description of the WOA and its adaptation to solve the DG
allocation issue. Section 4 presents the validation method-
ology and performance analysis using IEEE standard test
systems and discusses the implications of the results. Fi-
nally, section 5 summarizes the outcomes of this paper.
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2. Problem formulation
Since the distribution network reconfiguration is an opti-
mization problem, it includes objective functions and con-
straints, which are as follows:

2.1 Active power losses
One possible goal is to reduce active power losses to a
minimum. This index is considered as follows [33]:

Ploss =
Nb

∑
i=1

gm[(V s
m)

2 +(V r
m)

2 −2V s
mV r

m cosθm] (1)

where V s
m and V r

m are the values of the voltage amplitude at
the two ends of sending and receiving line m, respectively.
gm is conductivity of line m, θm is the phase difference
between the two ends voltages of line m, and Nb is the
number of lines.

2.2 Voltage profile
Voltage is one of the most vital indicators of power quality,
which its profile improvement can be considered as one of
the objective functions in the optimization problem. This
objective function can be expressed mathematically as the
following equations [9]:

V DI =

√√√√ 1
Nbus

×
Nbus

∑
i=1

(vi − vp)2 (2)

vp =
1

Nbus
×

Nbus

∑
i=1

vi (3)

where VDI is the voltage deviation index, vi is the voltage
of ith bus, vp is the average bus voltage and Nbus is the bus
number. The magnitude of transmission network busbar
voltage changes is bounded by a± 5% tolerance, which
is represented in Eq. 4 [34, 35]. Maintaining the voltage
within the specified range helps prevent voltage collapse,
voltage instability, and other undesirable phenomena that
can lead to system-wide failures. The tolerance will be used
to evaluate the voltage profile of the system and achieve the
goal of minimizing busbar voltage deviation.

0.95p.u.≤Vj ≤ 1.05p.u. (4)

2.3 The backward forward sweep method
Since the backward-forward sweep (BFS) power flow is
easy to implement, converges quickly and reliably, and re-
quires low memory, it is frequently employed for load flow
distribution systems. Using Kirchhoff’s current law (KCL)
and Kirchhoff’s voltage law (KVL), the BFS method con-
sists mostly of three fundamental iterative phases. The cal-
culation of current at nodes, backward sweep, and forward
sweep are the three stages that must be repeated in order
to reach convergence. The BFS uses an easy-to-understand
and flexible radial distribution system numbering procedure
to identify each feeder, lateral, and sub-lateral branch. In
the radial distribution system, which can be seen in Fig. 1,
the buses p and q at the ends of the branch represent buses
that conduct transmission and those that receive it.
The following procedures are to determine the BFS load
flow:

Figure 1. The model of two buses in a system.

• Initialization

– Line and load information for the distribution
system must be included.

– Insert power and voltage at their foundational
levels.

– Determine the initial impedance.

– line and load data must be calculated in per unit.

– Use a unified bus voltage throughout the system
(1 p.u.).

– Consider convergence tolerance ε = 0.0001 and
∆Vmax = 0.

• Assign numbers in the system
The purpose is to assign a unique identifier to each
segment of the distribution network, such as a feeder,
lateral, or sub-lateral that links two buses. The distri-
bution network’s total number of sections, denoted as
NTotal

Sec , is given below:

NTotal
Sec = NTotal

bus −1 (5)

where, NTotal
bus represents the total number of buses. For

instance, to determine how many segments connect
node p and node q, we know that each segment will
be labeled with a number that is one less than the bus
number at the destination node, which can be written
as:

N sec
p −q = N sec

q
−1 (6)

where, N sec
p −q shows the section number between

buses p and q, N bus
q

is the number of q. Each sec-

tion within the distribution system should be assigned
a number.

• Determine the current at the nodes
The current injection at node i at iteration k, is given
below:

I(k)i = (
Si

V (k−1)
i

)∗− (Yi)(V
(k−1)
i ) (7)

In the above equation, I(k)i shows the current injection
at bus i, Si represents the power injection at bus i,
V (k−1)

i is the bus i voltage at iteration k − 1, and Yi
shows the sum of all shunt components.

• Backward sweep
Beginning at the end buses, move towards the branches
connected to the substation at iteration k. There-
fore, KCL is capable of identifying the currents in
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every branch and determining the powers through these
branches as follows:

I(k)L =−I(k)j −
M

∑
m=1

(
Sm

V (k)
j

)∗ (8)

S(k)L = (V k
j +ZL ∗ Ik

L)(I
k
L)

∗ (9)

where, I(k)L shows the current flow in branch L at itera-
tion k, I(k)j is the bus j current injected because of shunt
components, M represents the number of branches, Sm

is the complex power of branch m, V (k)
j is the bus

j voltage, S(k)L shows the branch power flow, and ZL
show the branch impedance L.

• Forward sweep
KVL operates in a forward sweep by updating nodal
voltages from the branches in the first section to those
in the last, starting with iteration k. At iteration k, the
voltage at receiving end q of a branch L connected to
sending end p is given below:

V (k)
q =V (k)

p −ZL ∗ Ik
L (10)

where, V (k)
p and V (k)

q show the sending and receiving
voltages, respectively.

• Inspect the voltage discrepancies
The voltage mismatches for all nodes are determined
after the previous steps have been computed. For in-
stance, the voltage mismatch at bus i and iteration k
can be determined as follows:

∆V (k)
i = ||V (k)

i |− |V (k−1)
i || (11)

The voltage convergence must be checked after calcu-
lating the voltage mismatches:

– If ∆V (k)
i > ∆Vmax, then ∆Vmax is equal to ∆V (k)

i .

– If ∆Vmax ≤ ε , move to step 8, otherwise increase
the iteration number and proceed to step 3.

• Analyze stopping criterion
If the maximum number of iterations has been
reached or the voltage mismatch convergence has been
achieved, the program will terminate.

• Calculate power loss
By plugging the node voltages and branch currents de-
rived from the BFS algorithm into equation 1, we can
determine the overall power losses of the distribution
system.

2.4 Bus voltage constraint
The voltage fluctuations in distribution systems are very
limited and the standards usually allow only minor changes
around the nominal value. Therefore, the voltage of the
buses should always be within a permissible range, which
is expressed as below:

vmin
i ≤ vi ≤ vmax

i , i = 1,2, . . . ,Nbus (12)

where vI is the voltage of ith bus, vmin
i and vmax

i are the
minimum and maximum permissible voltages of ith bus,
respectively.
2-1-Line current constraint
Each branch’s current must be maintained at or below its
full capacity to avoid the lines from being overloaded. This
is expressed by the following relation:

|Ii| ≤ |Imax
i |, i = 1,2, . . . ,NLine (13)

where |Ii| is the absolute value of current in ith line, |Imax
i |

are the maximum permissible current of ith line and NLine
is the number of lines.

2.5 System radial configuration and isolation con-
straints

The most significant limitation on the network reconfigura-
tion problem is the requirement that all buses be contained
within a radial distribution system layout. In this paper, the
system configuration is verified using the method proposed
in [36, 37].

3. Whale optimization algorithm
The WOA is a meta heuristic optimization technique in-
spired by the social behavior and hunting strategies of hump-
back whales. This research article presents a comprehensive
review of the WOA, exploring its key concepts, algorith-
mic components, and underlying principles. The paper
discusses the evolution of WOA, its adaptations, and vari-
ants developed to address various optimization challenges.
The primary goal of the WOA is to efficiently search for
the global optimum of a given objective function in diverse
problem domains. The algorithm mimics the cooperative
foraging behavior of humpback whales, involving the three
main phases: exploration, exploitation, and encircling prey.
These phases allow WOA to balance exploration of the so-
lution space to discover promising areas and exploitation to
converge towards the optimal solution [38].

3.1 Encircling of prey
Finding and enclosing prey is a common hunting tactic for
humpback whales. Since we don’t know where the ideal
design is in the space of possible designs before we start,
WOA works on the assumption that the best possible solu-
tion is either the target or very near to it. The remaining
search agents will update their positions to naturally gravi-
tate toward the best search agent once it has been discovered.
The following equations model this behavior:

D⃗ = |C⃗.X⃗p(t)− X⃗(t)| (14)

X⃗(t +1) = X⃗p(t)− A⃗.D⃗ (15)

where t is the iteration, A⃗ and C⃗ show coefficient vectors,
X⃗p(t) indicates current optimal solution position, and X⃗(t)
is the position vector.
The vectors A⃗ and C⃗ are given below:

A⃗ = 2⃗a.⃗r1 − a⃗ (16)

C⃗ = 2.⃗r2 (17)

In the above equations a⃗ is linearly decreased from 2 to 0 as
iterations progressed and r1, r2 are random vectors in [0, 1].
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3.2 Bubble net hunting mechanism
Two methods are developed to determine the bubble net
hunting mechanism:

3.2.1 Shrinking encircling prey
To create this behavior, decrease the value of a⃗ in 16. Note
that the variation range of A⃗ is also decreased by a⃗. In other
words, as a is gradually reduced from 2 to 0, A⃗ is a random
value in the interval [-a ,a]. By choosing values for A⃗ at
random in [-1,1], anywhere between the starting position
and the optimal agent’s position can be found as the new
location of a search agent.

3.2.2 Spiral updating position
This strategy initially considers the separation between the
whale situated at (X ,Y) and prey located at (X∗,Y∗ ). As
a result, a spiral equation has been developed between the
location of the whale and its prey in order to replicate the
helix-shaped movements of humpback whales, which is as
given below:

X⃗(t +1) = D⃗′.ebl .cos(2πl)+ X⃗∗(t) (18)

where D⃗′ = |X⃗∗− X⃗(t)| shows the distance of the ith whale
to the prey, b is a parameter used to specify the logarithmic
spiral’s shape, and l is an arbitrary number in [-1,1].
Keep in mind that humpback whales hunt by swimming in
a converging spiral pattern around their prey. To represent
this simultaneous behavior, during optimization, whales’

positions are supposed to be updated with a probability of
50% using either method. The form is given below:

X⃗(t +1) =

{
X⃗∗(t)− A⃗.D⃗ i f p < 0.5
D⃗′.ebl .cos(2πl)+ X⃗∗(t) i f p ≥ 0.5

(19)
where p is an arbitrary integer between 0 and 1.

3.3 Search for prey

The same manner, depending on the difference of the A⃗
vector can be used to explore for prey. Actually, humpback
whales conduct their searches at random with respect to one
another. Forcing the search agent to disperse significantly
from the reference whale, the A⃗ vector can be employed
with random values outside the range [-1,1]. In the explo-
ration phase, as opposed to the exploitation phase, when the
best search agent is used to update a search agent’s position,
a randomly selected search agent is utilized to do so. Us-
ing this mechanism and |⃗A| > 1, the WOA algorithm can
conduct a global search and emphasize exploration. The
mathematical form is given below:

D⃗ = |C⃗.X⃗rand − X⃗ | (20)

X⃗(t +1) = X⃗rand − A⃗.D⃗ (21)

where ⃗Xrand represents a randomly chosen whale from the
present population. The steps involved in putting WOA into
action are in Fig. 2.

Figure 2. The flow chart of WOA approach.
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4. Simulation and results
The efficiency of the suggested method is demonstrated by
applying it to IEEE 33 and 69 bus networks. In this pa-
per, numerical calculations are performed in four separate
scenarios. The first case is related to normal network condi-
tions, the second case is when DG is installed in the network
separately, in the third case, network reconfiguration is ap-
plied separately, and in the fourth case, DG placement and
sizing after network reconfiguration are considered. In all
scenarios, number of population and maximum iteration are
considered 10 and 10, respectively.

4.1 System 1
The data of this 33-bus network is available in [39, 40].
Fig. 3 is a schematic representation of the IEEE 33-bus
network. This network has a nominal voltage of 12.66 kV
and the active and reactive loads installed in this network
is equal to 3715 kW and 2300 kVar, respectively. The total
active power loss is equal to 202.6 kW. The system has 37
branches, 32 sectionalizing switches and 5 tie switches. The
switches 37, 36, 35, 34 and are open before the reconfigura-
tion of the system.

Figure 3. The IEEE 33-bus distribution system.

4.1.1 Case I (Normal network conditions)
Table 2 displays the outcomes of applying the proposed
technique in all cases. As mentioned before, in the first
case, network reconfiguration and DG placement are not
considered. In this case, the network is in the normal condi-
tion and the switches 37, 36, 35, 34 and 33 are open. The
network loss in this case is 202.6 kW.

4.1.2 Case II (DG placement and sizing using WOA)
According to Table 2, it can be seen that after DG placement,
the active power losses reduced from 202.6 kW to 81.09 kW
(59.9 % reduction) which indicates the effective and useful

role of reconfiguration. It can be seen from the simulation
that bus 31 is the optimal location for DG placement and
its optimal capacity is 1566 kW. Fig. 4 shows the effect of
applying the proposed technique in this case on network
voltage profile. It is obvious in Fig. 4, the network voltage
profile has significantly enhanced after DG placement. For
instance, in bus 18, the voltage was 0.913 p.u. before the
DG placement, while after implementing DG it reaches
0.944 p.u. That is nearly 3.3 % increase in bus voltage 18.
Also, the voltage value of bus 18 is the voltage minimum in
this case. The convergence curve of WOA for this case can
be seen in Fig. 5. It can be seen that the WOA converges to
the optimal global solution after 9 iterations.

4.1.3 Case III (Network reconfiguration using WOA)
In this case, network reconfiguration is determined using
WOA. According to Table 2, after reconfiguration, the
opened switches are 14 – 36 – 6 – 11 – 25. The active
power losses reduced from 135.14 kVar to 126.46 kVar. The
reactive power losses reduced from 202.6 kW to 164.44 kW.
It is obvious that optimizing the switching states of network
elements minimizes power losses in the network, which
results in enhancing system efficiency. In Fig. 4 we can
observe the voltage profile for case III, and in Fig. 5 we can
observe the convergence curve of the WOA. By comparing
the findings shown in Fig. 4, it becomes evident that the
reconfigured system voltage profile is significantly better.
In this case, the voltage minimum is 0.934 p.u., which is
for bus 33. According to Fig. 5, after 7 iterations, the WOA
finds the best global solution.

4.1.4 Case IV (DG placement after network reconfigu-
ration usinWOA)

In case IV, network reconfiguration is considered before
DG placement and sizing. According to Table 2, in this
case the opened switches are 14 – 36 – 6 – 11 – 25 and
the active power losses reduced to 65.06 kW which shows
a 67.8 % decrease compared to the first case. Also, the
reactive power losses reduced to 57.97 kVar which shows
a 57.1 % decrease compared to the first case. In this case,
the bus 29 is the optimal location for DG placement and
its optimal capacity is 1864 kW. Compared to the second
scenario, the installation capacity is increased. This proves
that the suggested approach functions properly.
Fig. 4 shows the network voltage profile following the sug-
gested method’s implementation. The improved distribution
system is evident in Fig. 4, which shows that the network
voltage profile has been significantly improved following
the reconfiguration of the network and the placement of DG.
For example, in comparison to the first scenario, the voltage
on bus 18 increases by approximately 3.3%, going from

Table 2. Results of applying the proposed method in all cases.

Case number Open switches Active power loss (kW) Reactive power loss (kVar) DG location DG capacity
Case I 33 – 34 – 35 – 36 – 37 202.67 135.14 - -
Case II 33 – 34 – 35 – 36 – 37 81.09 60.36 Bus 31 1566 kW
Case III 14 – 36 – 6 – 11 – 25 164.44 126.46 - -
Case IV 14 – 36 – 6 – 11 – 25 65.06 57.97 Bus 29 1864 kW
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Figure 4. The network voltage profile using WOA in all scenarios.

Figure 5. The convergence curve of the WOA in all scenarios.
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0.913 p.u. to 0.944 p.u. This bus has the lowest voltage, just
like in Case II. The WOA’s convergence curve for case IV
is shown in Fig. 4. After 6 iterations, the WOA converges
to the best global solution.
Table 3 illustrates the obtained results by further optimiza-
tion algorithm using IEEE 33-bus system. According to
Table 3, the proposed strategy reduces power losses by a
more significant amount than the solutions found using im-
proved analytical (IA) method [41], Sensitivity Approaches
(SA) [42], Particle Swarm Optimization (PSO) [43], Ar-
tificial Bee Colony algorithm (ABC) [44] and Harmony
Search Algorithm (HSA) [45]. It was determined that WOA
reduced loss by 67.8%. But there was a 45.18% decrease
for IA, 45.16% for SA, 45.21% for PSO, 48.18% for ABC,
and 45.23% for HSA, respectively. This indicates the WOA
is more effective and results in a significant loss reduc-
tion compared to the other optimization algorithm. In the
mentioned references, the authors proposed to increase the
number of the DGs, which requires significant investment.
However, the outcomes in this article were considerably en-
hanced through DG allocation and network reconfiguration
using WOA technique.

4.2 System 2
The 69-bus network has a total of 69 nodes, 73 branches
and 5 tie switches. Total connected loads are 3.802 MW and
2.696 MVAr [10, 13]. Fig. 6 is a schematic representation
of the IEEE 69 bus network. Switches 69, 70, 71, 72, and
73 are open during normal operation.

4.2.1 Case I (Normal network conditions)
The outcomes of implementing the suggested method in
each scenario are displayed in Table 4. As mentioned before,
in the first case, network reconfiguration and DG placement
are not considered. In this case, the network is in the normal
condition and the switches 69, 70, 71, 72 and 73 are open.
The active power loss is 224.9606 kW and the reactive
power loss is 102.147 kVar.

4.2.2 Case II (DG placement and sizing using WOA)
According to Table 4, it can be seen that after DG place-
ment, the active power losses diminished from 224.9606
kW to 140.138 kW (37.71 % reduction) which indicates the
effective and useful role of reconfiguration. It can be seen
from the simulation that bus 54 is the optimal location for
DG and its capacity is 3370 kW. Fig. 7 shows the impact

Table 3. A comparison to the obtained results of IEEE 33-bus by further optimization algorithm.

Comparison to further optimization algorithm Active power loss (kW) Loss reduction (%) DG capacity (MW) DG location
IA [41] 111.10 45.18 2.60 Bus 6

1SA [42] 111.14 45.16 2.49 Bus 6
PSO [43] 111.03 45.21 2.59 Bus 6
ABC [44] 105.02 48.18 2.57 Bus 6
HSA [45] 111.00 45.23 2.59 Bus 6

Figure 6. The IEEE 69-bus distribution system.

Table 4. Results of applying the proposed method in all cases for IEEE 69-bus.

Case number Open switches Active power loss (kW) Reactive power loss (kVar) DG location DG capacity
Case I 69 – 70 – 71 – 72 – 73 224.96 102.14 - -
Case II 69 – 70 – 71 – 72 – 73 140.138 58.49 Bus 54 3370 kW
Case III 13 – 70 – 58 – 10 – 61 104.3281 102.5826 - -
Case IV 13 – 70 – 58 – 10 – 61 82.7595 85.1341 Bus 64 446 kW
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of applying the proposed method in this case on network
voltage profile. It is obvious in Fig. 7, the network voltage
profile has significantly enhanced after DG placement. For
instance, in bus 65, the voltage was 0.909 p.u. before the
DG placement, while after implementing DG it reaches
0.9464 p.u. That is nearly 4.11 % increase in bus voltage
65. It should be noted that the voltage of bus 65 has not
reached the minimum set voltage which is 0.95 p.u. It can
be observed in Fig. 7 that the voltage value of bus 27 is the
voltage minimum in this case. The convergence curve of
WOA for this case can be seen in Fig. 8. From what we can
tell, the WOA converges to the optimal global solution after
9 iterations.

4.2.3 Case III (Network reconfiguration using WOA)
Here, WOA is used to figure out how to reconfigure the
network. Table 4 shows that following reconfiguration,
the selected switches are 13 – 70 – 58 – 10 – 61. From
102.147 kVar to 102.5826 kVar, the reactive power losses
rose slightly. Also, the decrease in active power losses was
53.62 %, going from 224.9606 kW to 104.3281 kW. Im-
proving system efficiency is a natural consequence of mini-
mizing power losses in the network, which can be achieved
by optimizing the switching states of network nodes. Com-
paring the results obtained in Fig. 7, after reconfiguring the
system, the voltage profile is clearly improved. In this case,
the voltage minimum is 0.9495 p.u., which is for bus 61.
According to Fig. 8, after 2 iterations, the WOA finds the
best global solution.

4.2.4 Case IV (Network reconfiguration and DG place-
ment and sizing using WOA)

In case IV, network reconfiguration is considered before
DG placement and sizing. According to Table 4, in this

case the opened switches are 13 – 70 – 58 – 10 – 61 and
the active and reactive power losses reduced to 82.7595 kW
and 82.1341 kVar, which shows a 63.21 % and 19.59 %
decrease compared to the first case, respectively. In this
case, bus 64 is the optimal location for DG and its optimal
capacity is 446 kW. Compared to the second scenario, the
installation capacity is decreased. However, the power loss
reduction was significant in this case.
According to Fig. 7, significant enhancement of the network
voltage profile is clearly visible after network reconfigu-
ration and DG placement, which leads to a more efficient
distribution system. For instance, the voltage of bus 65 rises
from 0.909 p.u. to 0.9858 p.u. compared to the first case,
representing an increase of about 8.45 %. Here, bus 61
has a voltage minimum of 0.9495 p.u. The voltage of the
busbars was better kept within the prescribed range by DG
allocation and network reconfiguration. For optimal power
transmission and distribution efficiency and to keep losses
to a minimum, it is crucial to keep the voltage within the
specified range. It also aids in controlling the voltage of the
electrical system, and prevents over voltages or under volt-
ages. Fig. 8 shows the convergence curve of the WOA for
case IV. It is evident that the WOA converges to the optimal
global solution after 3 iterations. The WOA coverages to
global optimum very fast, which showed to be effective in
network reconfiguration and identifying optimal location
and size of the DG.
Results from an additional optimization procedure applied
to the IEEE 69-bus system are shown in Table 5. Table 5
shows that the proposed strategy achieves lower loss re-
duction than the solutions achieved by IA [41], SA [42],
PSO [43], and HSA [45]. The loss reduction with WOA
was calculated 63.21 %. However, IA, SA, PSO, and HSA
had 63.84 %, 63.02 %, 63.00 %, and 61.33 % reduction,

Figure 7. The network voltage profile using WOA in all scenarios.
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Figure 8. The convergence curve of the WOA in all scenarios.

Table 5. A comparison to the obtained results of IEEE 69-bus by further optimization algorithm.

Comparison to further optimization algorithm Active power loss (kW) Loss reduction (%) DG capacity (MW) DG location
IA [41] 81.33 63.84 1.90 Bus 61
SA [42] 83.19 63.02 1.83 Bus 61

PSO [43] 83.22 63.00 1.87 Bus 61
HSA [45] 86.97 61.33 1.79 Bus 63

respectively. This shows that the WOA is superior to the
alternative optimization approaches and significantly re-
duces losses. Reconfiguring the network and allocating DG
minimize power losses, which is an economical alternative
approach compared to the mentioned methods.

5. Conclusion

In order to reduce power loss and improve the operational
efficiency of power distribution systems, this research study
suggests the Whale Optimization Algorithm (WOA) to han-
dle the issues of DG allocation and distribution network
reconfiguration. Standard test systems, IEEE 33 and 69 bus
networks, are used for validation and performance analysis
in four separate cases. The first case was normal condition
network, which DG allocation and network reconfiguration
were not considered; the second and third cases were DG
allocation and network reconfiguration individually, respec-
tively; and the last case was considering DG allocation after
network reconfiguration. The obtained results revealed sig-
nificant power loss reduction, improved voltage profiles,
and efficient utilization of DGs, ultimately contributing to
enhanced operational efficiency and sustainability of power
distribution systems. DG allocation and network recon-
figuration individually could improve voltage profile and
diminish active and reactive power losses of the network.

However, DG allocation after network reconfiguration re-
sulted in a greater reduction of power losses and a refine-
ment of the voltage profile of the network. In this condition,
consumers experience fewer disruptions and voltage-related
issues, leading to improved equipment performance and
reduced downtime. Compared to other methods in the litera-
ture like Particle Swarm Optimization (PSO), Artificial Bee
Colony algorithm (ABC), and Harmony Search Algorithm
(HSA), the suggested method’s performance is clearly su-
perior, as shown by the numerical data. Moreover, it was
observed that the WOA could coverage to global optimum
very fast. As the algorithm approaches the global optimum
quickly, fewer iterations or evaluations of the objective func-
tion are required.
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