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Abstract:
The scheduling in smart houses is a pivotal concern in power consumption networks on the demand side
owing to the expanding usage of renewable energy resources (RERs). To address the issue of distributed
energy management raised due to the expanded use of RERs, a peak-limiting distributed-time-bound strategy
is proposed and executed, providing a flexible distribution for the scheduling of appliances under real-time and
time-of-use pricing schemes. This paper presents a case study based on the pilot project initiated in Gujarat,
India, to better understand the scenario. The current work engenders a smart home energy management
system harmonizing with a residential grid. By embracing the proposed methodology, the electricity cost can
be curtailed to the bare minimum while concurrently reducing the peak demand, harnessing the maximum
potential of renewable energy sources, and optimizing the peak-to-average ratio. Multiple scenarios have been
enacted, encompassing various applicable tariff structures, methodologies, and the integration of renewable
energy sources. The electricity bill using the proposed strategy is significantly reduced by about 95.25 %
compared to a random scheduling case (base case) considered in the paper. The maximum peak reduction
compared to the random scheduling case is about 70.8 % in one of the presented scenarios.

Keywords: Cost-effective energy management; Demand response; Home energy management; Renewable energy source integration;
Dynamic pricing; Smart home

1. Introduction

In the era of modernization and development, rising en-
ergy demand is a well-known fact [1](4.6% increment in
global demand in the year 2021). According to the Inter-
national Energy Agency, India ranks third in global energy
consumption, which has doubled since 2000 as a result of
growing living standards. After recovering from the peaks
of COVID-19, India is now in a dynamic situation in terms
of energy growth. After COVID-19, with the improvement
of the Indians’ financial situation, a significant percentage
of the population is heavily purchasing electrical items for
their comfort and transportation. India’s growing electric
vehicle industry, as well as the increased installation of
heating, ventilation, and air conditioning (HVAC) systems
as a result of global warming, will require the country to
adopt its power infrastructure to accommodate rising energy
consumption [2].
It has become crucial to enhance the electricity supply by
deploying distributed energy resources (DERs) to bridge
the gap between demand and supply [3]. The Indian gov-
ernment has set a target of adding 175 GW of renewable

energy capacity by the end of 2022, including 100 GW
coming from solar PV, 60 GW from wind power genera-
tors, 10 GW from bio-power plants, and 5 GW from small
hydro-power plants [4]. India has seen the highest growth
of 9.83% in renewable energy in 2022 with 70.10 GW from
solar as of July 2023. This case study is based on the data
of Gujarat state and the pricing schemes are taken from a
report of the India Smart Grid Forum [5]. Uttar Gujarat
Vij Company Ltd. has employed smart metering facilities
for 22,230 users as a pilot project. Wind power accounts
for roughly 6073.07 MW of the total renewable capacity
(RC) installed in Gujarat (8651.8 MW), almost 70% of the
total RC. Gujarat is currently using a variety of electricity
tariffs e. g. , three-part tariffs for residential customers and
time-of-day pricing for a few industrial customers. Still, the
Ministry of New and Renewable Energy (MNRE) is also
working on implementing other dynamic tariffs for peak
load duration. Starting from Gujarat, other states can also
deploy these tariffs. Depending on the success of the pilot
project, the implementation of demand response programs
(DRPs) will surely increase throughout the country signifi-
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cantly.
The DRP is an excellent tool [6], [7] for the utility to in-
crease the efficiency of the electricity distribution network
[8], to reduce the operational cost [9], and to meet the
energy demand by making a flexible load demand. With
respect to an industrial customer, a residential customer is
significantly affected by the electricity cost, and this can be
a motivating factor to make his load adjustable. A customer
can also be a prosumer by generating electricity at its end,
reducing its electricity consumption bill, and supplying the
extra produced electricity to the utility or neighborhood, cre-
ating another source of income. The energy consumption
by smart houses has increased from 20% in 2018 [10] to
around 40 % of the worldwide power [11], which will defi-
nitely increase when electric vehicles [12] replace the major
portion of conventional vehicles [13]. The ever-increasing
power demand will cause unforeseen peaks in the demand
generation curve, putting a strain on generation, transmis-
sion, and distribution assets. To meet such unanticipated
peaks, significant capacity expansion is required. However,
during off-peak periods, this peak capacity remains unpro-
ductive, causing a loss of the cost of available capacity and
efficiency [5].
A DRP enables the use of renewable energy resources
(RERs) on the customer’s end. Due to the high penetra-
tion of RERs on the distribution side, energy management
and scheduling have become critical issues [14]. In [13],
the authors proposed a hybrid of nature-based optimization
techniques for the optimization of the home energy manage-
ment system (HEMS) model including genetic algorithm
(GA), particle swarm optimization (PSO), wind-driven opti-
mization, and other heuristic techniques. It was found that
the results were better than the stand alone techniques in
terms of execution time and convergence rate. A flat-rate
tariff is compared with a day-ahead price tariff, and factors
like energy cost, peak-to-average ratio (PAR), and carbon
emission are studied. The authors [15] proposed a HEMS
including RERs and battery storage using a day-ahead real-
time pricing (RTP) plan to schedule the appliances. A hy-
brid genetic-based harmony search approach was used for
modeling the system, which has been shown to be superior
to the GA and the harmony search algorithm. However,
this algorithm has the drawback of being limited to a small
number of users rather than the entire community.
The authors [16] studied Australian grid-connected houses
with different solar PV sizes installed under a time-of-use
(TOU) pricing scheme. Various energy management solu-
tions for battery discharging durations are discussed. It has
been discovered that the combination of DRP with TOU
and a battery, might lower the peak load by up to 35%. By
comparing the TOU and RTP pricing schemes, the authors
in [17] employed a model predictive control technique for
domestic-controlled appliances to reduce power costs. The
study comprised photovoltaic (PV) panels with batteries for
an un interruptible power supply whenever local demands
demanded it.
The authors implemented an event-driven approach [18] for
the fast reaction of an automated controlling system for any
random change in load conditions. Different approaches

have been proposed and discussed for the accuracy of the
real-time values, which have been decided to implement in
the pilot project at AutBudNet laboratory.
The authors [19] used PSO and artificial bee colony op-
timization methods for the single objective function used
to model an HEMS comprising microgrid, PV, wind, and
diesel engines. A number of houses with 5 kW loads and
EVs were included for microgrid operation. The heuristic
methods were compared by operating in autonomous and
coordinated modes. The coordinated mode was found su-
perior to the autonomous mode because it covered more
factors than when working alone. The authors [20] pro-
posed a management framework for a local energy market
having multiple smart homes connected to the grid. The
funded project has focused on reducing operation cost, grid
dependency, and maximizing revenue. The framework has
been compared for three algorithms RAO-1, JAYA, and
teaching-learning-based optimization techniques and the
JAYA algorithm was found superior to the others.
The authors [21] used a fuzzy interface system to save en-
ergy from the HVAC system and use the saved energy to
improve the quality of lighting in the house. TOU pricing
tariff adopted from HydroOne has been used in the study
for incentive purpose during high production. Several sce-
narios for different visual comfort (illumination) of the user
were discussed and accordingly, five membership functions
ranging from very low to very high lux were created for
each scenario. Although the study has worked on providing
a better environment to the people of the building but it
was limited to HVAC and lighting only. The authors [22]
proposed a transactive energy approach using game theory
to solve the conflicts between utility and prospers. The
study focused on the secondary distribution network and the
transformer life duration by resolving PQ difficulties and
voltage unbalance. Their findings show that PQ difficulties
can be remedied by reducing the PV output power and the
EV charging requirement. The charging and discharging
cycle of an EV also plays a major part when it comes to the
stress of a load on the local transformer; that’s why state of
charge (SOC) management is also a key point in the energy
management of a smart home.
The authors [23] proposed a method to manage the gen-
eration and various loads on an all-electric ship for the
minimization of greenhouse gas emissions and power oper-
ation costs. The objective function in the ship could have a
lot of sensitive constraints, which makes it quite complex,
which is why dynamic programming was employed to solve
it. The authors [24] used Lyapunov optimization to opti-
mize a grid-connected house employed with an HVAC load.
The goal of the study was to minimize the average cost and
thermal discomfort of the residents. The employed algo-
rithm reduced the overall electricity cost by up to 20.15%,
maintaining the comfort constraints required by the resident.
However, the effect on the user’s comfort during the DRP
was not analyzed. The authors [25] formulated a Markov
decision process for the scheduling of home appliances to
minimize energy cost, but the study was limited to HVAC
loads and non-shiftable loads in a smart home.
Research gaps:
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i. The presence of a robust infrastructure, such as smart
grid systems and advanced metering infrastructure, has fa-
cilitated the implementation of demand response programs
in Europe. In contrast, the infrastructure in India is still
in its early stages of development, which could hinder the
implementation of demand response programs. Many re-
searchers have worked on demand response implementation
considering several European countries but not India. Re-
search is needed to explore effective ways to engage these
stakeholders in India and identify the factors influencing
their participation in demand response programs.
ii. Home energy management has been a vast area of re-
search for the last few decades, and many studies are avail-
able on optimizing energy costs. The authors [15], [19],
[26] have formulated and solved the optimization problems
using heuristic methods providing an approximate solution,
which may or may not be close to the optimal solution.
iii. Many research papers considered the time horizon di-
vided on an hourly basis, which means, it will be highly
distant from real-time because energy prices, demand, and
supply change rapidly, so time slots would be more prag-
matic.
iv. Human behavior is very difficult to understand, making
it very unpredictable; that’s why many listed research arti-
cles haven’t considered the customer’s comfort level along
with the scheduling of appliances in their works.
Contribution of the paper:
The electricity market design in India is vastly different
from that in Europe, and research is needed to understand
how demand response programs can be integrated into the
existing market structure. This includes exploring the role
of different stakeholders, such as utilities, aggregators, and
consumers, in the demand response market. This study has
focused on a project in India where smart metering is in
its pilot state; hence this study can play a crucial role in
this area. Mixed integer programming (MIP) solvers are
very flexible and can handle a wide range of optimization
problems, including problems with complex constraints,
non-linearities, and integer variables. This paper uses MIP
techniques to solve the objective function, giving the same
result every time, providing a global solution, and making
the solution more reliable. The major contributions of the
proposed work are:
i. In this paper, higher-resolution time slots of fifteen min-
utes are chosen to provide greater flexibility in scheduling
to make the results more realistic.
ii. Customer comfort can be a subjective concept and may
vary greatly depending on individual preferences, lifestyle,
and cultural norms. It may also be difficult to measure or
quantify customer comfort in a way that can be included in
research studies. In this paper, a delay factor (DF) has been
assigned to schedule the high-priority appliances as soon as
possible, so that the user’s comfort would not be affected.
iii. In this paper, a peak limiting distributed-time bound
strategy (DTBS) is proposed and implemented in which a
single appliance is given multiple choices so that a more
flexible and flattened load curve can be found.
To the best of the author’s knowledge, the proposed strategy
has not been implemented in any of the research articles

and found effective in terms of PAR and electricity cost, as
depicted by results included in section 3. The remaining
paper is constructed as follows: Section 2 consists of the
details about the details and modelling of appliances and
locally available sources. It also describes the pricing tariff
employed in the study, the objective function, and the pro-
posed solution for the study. Further, section 3 discusses the
case study and analysis of the results of the study. Section 4
summarizes all the major results of the study while section
5 concludes the results including the limitations of the study.
In section 6, the nomenclature is available for the undefined
symbols.

2. System modelling
The study centers on residential consumers equipped with
smart meters and in-home displays, enabling them to ac-
tively engage in demand response programs by monitoring
dynamic pricing schemes, prioritizing energy usage based
on personal preferences, and accessing real-time prices and
consumption data. The appliances employed in the house
are supposed to be engaged with an intelligent controller
that can communicate and operate the devices according to
the given operating instructions.
The set of appliances A=1,2,. . . . . . .20 employed in a group
of N houses is supposed to be controlled by a home energy
management center (HEMC). The HEMC will find the time
schedule for each appliance of each house. For more realis-
tic behaviour, the time horizon of 24 hours is divided into
96 slots of 15 minutes each, denoted by H 1,2,. . . ..96. The
energy consumed in any time slot h ∈ H by the appliances
a ∈ A for each house n ∈ N is denoted by a set Qn,a.

Qn,a = [Q1
n,a,Q

2
n,a. . . . . . . . . . . . ..Q

h
n,a] (1)

The total energy consumed by an appliance in a complete
time horizon is denoted by Wn,a can be written as

∑
h∈H

Qh
n,a = Wn,a ∀n,∀a (2)

From the utility perspective, peak demand per slot should
be within a specified limit so that the need for peak power
reserve generators gets reduced, which further helps in the
reduction of the extra burden on the utility during peak
hours. Keeping it in mind, a constraint is used that limits
energy consumption in any slot

∑
n∈N

∑
a∈A

Qh
n,a ≤ Wmax ∀h (3)

To overcome the issue of limited kinds of appliances found
in many works of literature, twenty appliances are included
in the study, covering almost all sorts of residential loads,
divided into four categories according to their operating
characteristics [27], as shown in Table 2
Interruptible loads (Type-1): This category includes appli-
ances that can run at any time slot selected by the user, and
that can be turned OFF and restarted at any time slot. These
appliances can operate in ON (1) and OFF (0) states depend-
ing on the binary variable yh,n,a consuming a fixed level of
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energy Y max
n,a and Y min

n,a respectively. The energy consumption
for such loads is written as

Qh
n,a = yh,n,a ∗Ymax

n,a +(1−yh,n,a)∗Ymin
n,a ∀h (4)

Considering Tn,a as the total operating duration of an ap-
pliance, and the customer’s preferred slots arranged in a
vector Sh,n,a (value is 1 during operation and 0 otherwise),
the operation of interruptible loads is controlled by

∑
h∈H

(yh,n,a ∗Sh,n,a) = Tn,a (5)

Uninterruptible loads (Type-2): Unlike the interruptible
ones, these appliances can not be turned off in between
the given tasks. The HEMC will decide the starting time
only. For this category, HEMC will decide a single time
schedule from the user’s preferred time slots according to
the operating duration of the appliance.
Plug-in Hybrid Electric Vehicle (PHEV): It is a special type
(Type-3) of load that acts like a load as well as a distributed
energy source depending on its SOC. The minimum and
maximum limits constrain the total energy consumed by
these appliances.
Must-run loads (Type-4): This category includes the HVAC
and lighting loads of the residence.

Qh
n,a ∗Sh,a = Wn,a ∀h,∀n (6)

The energy consumption by all the appliances must be
bounded to certain limits, such as

Ymin
n,a ≤ Qh

n,a ∗Sh,n,a ≤ Ymax
n,a (7)

2.1 Pricing schemes
Dynamic tariff architectures carry the ability to flat the de-
mand profiles, allowing power companies to save money on
capacity expansion while also planning energy generation
and distribution more efficiently. For implementing a DRP,
the load should be adjustable so that end-use consumers can
vary their electricity usage from their usual or current con-
sumption behaviour, responding to market signals enabled
by dynamic tariffs. The load is controlled either directly
by the utility or the user’s end itself, depending on the type
of DRP applied. In this case study, a price-based demand
response strategy is employed using TOU and RTP tariff
structures which are compared with the fixed rate tariff as a
base case.
In the TOU pricing scheme, the electricity tariff for the
time horizon of a day is usually divided into 3 or 4 zones,
depending on the average load on the grid and prices in
the power market. The TOU rates used in this study are
shown in Table 1, which are taken from the Indian Smart
Grid Forum report [5]. In the RTP scheme, rates might vary
in a few minutes or on an hourly basis, but for more realistic
results, 15-minute slots are considered in this study, and
prices for Gujarat are taken for the Indian electricity market
from the Indian Energy Exchange [28] shown in Fig. 1.

2.2 Wind generator
Gujarat is a coastal area, which is why it has massive poten-
tial for wind power generation, as stated in the introduction

section (70% of the total RC is from wind generators). In
this study, a 5 kW wind generator is supposed to be installed
on the occupant’s premises, and the total generated power
is shown in Fig. 2. The wind speed data, equations, and the
wind power generated are taken from [27] and [29].

2.3 Problem formulation
The modelled final objective function has two parts pro-
grammed to minimize the overall electricity bill the user
has to pay and maximize the occupant’s comfort level. The
HEMC will schedule the interruptible appliances in the
most economical time slots and uninterruptable appliances
into the time schedule that the DRP participants prefer.
The total bill waved on the customers is formulated as

Q1 = ∑
h
(∑

n
∑
a

Qh
n,a)∗Ch (8)

The symbol Ch denotes the price of the electricity consump-
tion in the particular time slot ’h’ according to the tariff
accepted by the customer.
Now it is evident that in this era where several appliances
are to make life easier and more comfortable, any modern
customer would want to maximize his comfort by utilizing
his appliances during his preferred time duration as soon as
possible. For this, some appliances have been given higher
priority and a linear delay factor (DF) Fh

n,a has been included
starting from 1 at the first preferred slot with an increment
of 25% per slot till the last slot. To apply this factor to
the scheduling, a comfort cost (Q2) has been calculated
according to the energy utilized and written as

Q2 = ∑
n

∑
h

∑
a
(Qh

n,a ∗Fh
n,a) (9)

High-power appliances have a significant portion of the
electricity bill, and hence, this comfort cost is associated
with Qh

n,a so that high energy-consuming appliances will
be shifted first, and the overall cost will be optimal. This
term will undoubtedly increase the electricity bill, but it will
schedule the high-priority appliances as soon as possible.
By considering both terms, the final objective function will
act as a multi-objective function by scheduling the appli-
ances for minimum electricity cost as well as comfort cost
and can be written as

Obj = min{∑
h
(∑

n
∑
a

Qh
n,a)∗Ch +∑

n
∑
h

∑
a
(Qh

n,a ∗Fh
n)}

(10)

2.4 Inclusion of wind generators
The main advantage of DRP is the ability to integrate dis-
tribution generators by the occupants at the load end and
get an opportunity to sell the remaining electricity to the
grid. This facility also turns a customer into a producer,
and people can earn money if they have a large surplus of
extra power. The house should be enabled for work in both
grid-to-home (g2h) and home-to-grid (h2g) modes for this
facility. In this study, wind power generated by each user,
buying price, and selling price to the grid is kept the same
for simplicity, but in a practical scenario, it is regulated
according to the policy of the government bodies. By in-
cluding the wind-generated power, the objective function
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can be modified as

Obj= min{∑
h
(∑

n
∑
a

Qh
n,a −Ph

w,n))∗Ch +∑
n

∑
h

∑
a
(Qh

n,a ∗Fh
n)}

(11)
Here Ph

w,n is the wind power generated by the nth occupant
at hth time slot. This study focuses on the on-grid operation;
hence, battery energy storage system is not included to
overcome the uncertainty in wind power.

2.5 Proposed solution
The objective functions of the paper are shown as 10 and 11,
which are linear and constrained with 2 to 9. Some con-
straints are integers, and some are binary in nature, making
the problem linear and solvable using the MIP technique.
In the upcoming sections, different scenarios are discussed
for which suitable solvers like CPLEX and DICPOT are
used to solve the problems [30]. The branch and cut algo-
rithm is used by the CPLEX solver of GAMS, which is a
very efficient and successful tool for solving these types of
problems and provides a global solution every time we run
the program, unlike heuristic methods that offer a locally
optimal solution [31]. Fig. 3 shows the flowchart for the
proposed strategy for optimal scheduling of the home ap-
pliances. The set vectors S1, S2 & S3 mentioned in Fig. 3
are the different time sets (Set 1, Set 2 & Set 3) used to
implement the proposed distributed-time bound strategy as
shown in Table
reft2 in the next section. Further, S1, S2 & S3 are explained
in detail under subsection “Distributed-time bound strat-
egy”. The problem is solved using the CPLEX solver of
GAMS software on a 64-bit, Intel Core i5-1035G1 CPU
@1.00 GHz processor laptop.

3. Case study and discussion of results
For this study, three residential consumers are considered
to have a wind generator of 5 kW. This generated power
is equally distributed among the occupants. All residents
are supposed to have the appliances [27] listed in Table 2
and agree to participate in the DRP. The type of the appli-
ances is selected according to the operating characteristics
as discussed in the section on system modelling. The oper-
ating time of appliances is divided into slots of 15 minutes
and accordingly, per day consumed energy is also divided
according to the load characteristics of that particular appli-
ance.
For this case study, the combined maximum energy con-
sumption of all three customers for a particular time slot
is taken as Wmax=5 kW. Different scenarios have been cre-
ated to see the effect on scheduling, PAR, cost, and comfort
level of the consumer, compared to the base case. The PAR
value is calculated from the curve of power drawn from
the grid in all scenarios. For the calculation of average
power, all 96 slots are included, even if there is any null or
negative power demand. For the base case to scenario-8,
operating time preferences are collected as set-3, whereas
in the distributed-time bound strategy, different options are
available, as shown in Table 3.
Input Data: Operating characteristics of the appliances,
users’ preferred slots in different scenarios, maximum and

minimum limits of the energy consumed by the appliances,
maximum energy that can be transferred to the grid, elec-
tricity rates in different tariffs, wind power derived from the
wind speed data, are considered as inputs where required.
Base case: In the base case, customers randomly schedule
their appliances but within the same preferred time slots,
which are later offered for DRP. It is assumed that all three
customers are selecting the same duration for a similar type
of appliance, and a fixed tariff of 6 INR is applied for elec-
tricity consumption. Since the data is in the form of power
per slot, it reflects the combined energy consumption for all
the users, and Fig. 4 shows the random scheduling for the
base case without any DRP.
It is clearly seen in Fig. 4 that the maximum demand is
9.0223 kW at the 29th slot, whereas the average of the load
curve is found to be 1.5306 kW, and thus PAR is calculated
as 5.8945. This high peak can cause immense stress on the
power system, and reserve cost is also high since the service
provider has to purchase the peak load generator for such a
small operating duration. The total energy cost is calculated
to be 293.88 INR per user and a total of 881.64 INR.
Now, in order to integrate DRP, a dynamic pricing mecha-
nism must be established, allowing loads to be transferred
to low-cost time slots. In this study, RTP and TOU tariff is
implemented, as shown in upcoming scenarios. Although
all of the scenarios assess the occupant’s comfort level by
taking into account his choices, each situation has its own
set of inclusions and exclusions.
Scenario 1: Scheduling of the appliances with RTP tariff
structure.
In this case, an RTP tariff is applied to integrate DRP, and
scheduling is done to reduce the peak power demand. Since
separate scheduling of 20 appliances for each user will be
complex to show in a figure hence aggregated scheduling
and load curve for each user is shown in Fig. 5. A seg-
ment is focused on the graph, in which it is evident that
HEMC has attempted to manage each user with a separate
operating time in the user’s preferred time slots. Despite
providing only a few extra slots other than required for each
appliance’s operation, the load has been flexible enough to
provide a flattened load curve. The cumulative peak power
has been decreased to 4.927 kW, a 45.39 percent drop from
the base case’s 9.0223 kW, and PAR is also reduced from
5.8945 to 3.219. As a result, the utility’s need for peak load
generators is significantly lowered.
Since each user’s load curve is different, different peaks and
PARs are noticed. The peak power demand for users 1&3
is 4.302 kW, while for user 2 is 4.596 kW. The total cost
of electricity for all consumers is determined to be 658.22
INR.
Scenario 2: Scheduling of the appliances with RTP tariff
structure considering DF.
Eight appliances of each occupant’s choice have been pri-
oritized more than other appliances. The purpose of the
priority is to start a particular appliance as soon as possible
in the desired time schedule. Personal Computer, Water
Pump set, Coffee Maker, Range Top, Microwave Oven,
Toaster, Toaster Oven, and Oven are supposed to high high-
priority appliances. A linear DF is designed to start these
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high-priority appliances as soon as possible. Under scenario
1, for user 1, the water pump was scheduled in 85th to 96th

slots while the available slots were 77th to 88th. Due to this
DF, the water pump is rescheduled to 77th to 88th slot, shift-
ing toward minimum delay. Similarly, the toaster is shifted
toward the 29th slot from the 30th slot, and the toaster oven
is shifted from the 87th slot to the 81st slot. To show all the
variations in a graph is not possible here, but the effect of
the DF on the shifting of loads can be seen in Fig. 6.
Separate load curves for each user are shown in Fig. 7,
where rescheduling can be clearly seen in the zoomed-in
section.
The overall load curve’s peak demand is decreased to 4.7848
kW with a PAR of 3.126, a 46.97% reduction compared to
the base case and 2.89 % compared to scenario 1. PAR in
this scenario is found to be 3.126, which means that stress
on the power network and utility capital investment is far
reduced. The customer’s comfort level is increased as his
appliances started the instant when he requested them, but
the occupier is charged an additional fee due to the redeploy-
ment. The combined electricity bill of all users is increased
to 670.44 INR. An extra cost termed as comfort cost in (9)
is calculated to be 65.34 INR, and thus overall energy cost
paid by the consumer is 735.79 INR.
Scenario 3: Scheduling of home appliances with the inclu-
sion of wind generator while implementing RTP with DF in
the grid to home (g2h) mode.
A small wind generator of 5 kW is supposed to be used
equally by all three users, and wind energy is supposed to
be free of cost for all users. In this scenario, it is considered
that power transfer between houses and the grid is one-way,
i.e., grid to houses only. Because wind energy is available
for all consumers’ household appliances, there are numer-
ous periods when energy demand from the grid is zero and
energy is supplied solely by the wind. For this scenario,
power demand from the grid is shown in Fig. 8. In the
previous scenario, the aggregate power consumption, which
was 145.94 kW, has now decreased to 66.95 kW.
The costs of energy usage for users 1, 2, and 3 are 99.97
INR, 99.97 INR, and 109.37 INR respectively. The total
cost of electricity for all customers is estimated to be 309.31
INR. The total amount paid to the utility is estimated as
385.08 INR after including the comfort cost of 75.76 INR.
Scenario 4: Scheduling of home appliances with the inclu-
sion of wind generator while implementing RTP with the
grid to home (g2h) mode and home to grid (h2g) mode. For
the full utilization of RE sources and the benefit of the oc-
cupant, bidirectional power flow should be enabled so that
customers can sell the extra power to the grid. This study
has exercised the purchasing and selling prices equally; how-
ever, they may fluctuate depending on utility tariffs. This
enabling of bidirectional energy flow changed appliance
scheduling as shown in Fig. 8 to Fig. 9. The negative power
in Fig. 9 shows the energy fed back to the grid. Although the
appliances’ ratings and operational characteristics, as well
as the wind energy profile for each user, are all the same,
the scheduling for each user is distinct. This difference is
due to the peak limiting strategy applied in the DRP.
The individual power drawn from the grid by each user is

found to be 6.136 kW which is combinedly 18.407 kW. For
the same power drawn from the grid, users have to pay dif-
ferent bills, i.e., user 1 has to pay 36.5 INR, and users 2&3
have to pay 30.90 INR due to different appliance scheduling.
Thus, the combined electricity bill for the users is found
to be 98.32 INR, which is added to the extra comfort cost
of 65.34 INR. Hence users have to pay a total of 163.66
INR to the utility, which is about an 81.43% cost reduction
compared to the cost of the base case electricity bill. The
aggregate peak demand from the grid is found to be 4.62
kW in this scenario, which is a 48.8% drop from the base
case and the lowest among the above-mentioned scenarios.
The comparative analysis of the final load curves from the
base case up to scenario 4 can be seen in Fig. 10, in which
peak demand reduction is clearly visible.
Scenario 5: Scheduling of the appliances with TOU tariff
structure.
The cases from scenarios 1-4 are now implemented with a
TOU tariff proposed for Gujarat, and the scheduling done
by HEMC by keeping all other parameters as same, are
presented in scenarios 5th to 8th. Load curves for the users
after implementing the TOU tariff are shown in Fig. ??.
The combined electricity bill in this scenario is found to be
607.39 INR. Peak demand for the combined load curve is
found to be 4.88 kW with an average of 1.53 kW; thus, PAR
is calculated as 3.191.
Scenario 6: Scheduling of the appliances with TOU tariff
structure considering DF.
The effect of the DF can be easily seen in the zoomed sec-
tion of the graph shown in Fig. ??. Regardless of the higher
rates at the 77th slot, the water pump must be scheduled
there, whereas, in scenario 5, it was primarily running in
the 87th – 96th slots during off-peak hours. Due to this type
of shifting, the electricity bill has to be increased, excluding
the extra comfort cost. In this scenario, the overall con-
sumption bill is calculated as 686.67 INR, including 63.48
INR as comfort cost.
Now, scenarios 7th & 8th are just like 3rd & 4th; the only
difference is the applied tariff. Each plot is not exhibited
due to the similarity of the processes; however, these cases
will be addressed in the conclusion section. All the primary
cases (scenarios 1- 4) are considered with distributed time-
sets integrated with RTP and TOU pricing schemes in the
upcoming scenarios.

3.1 Distributed-time bound strategy

It is the proposed slot preference technique in which
distributed-time bounds are introduced to give users more
than one choice to operate their appliances. Users are
prompted to choose three time sets to implement this ap-
proach, which are organized as set 1 (S1), set 2 (S2) and
set 3 (S3), as shown in Table 2. In this way, this strategy
will give an extra degree of freedom for scheduling the ap-
pliances compared to a single time-restricted strategy. In
general, the choice of the time slots may be the same or
different for similar appliances under a time set for each
user. However, in the current work, for simplicity, it is
assumed that each user is given the same time slots for
similar appliances under a time set. In this study, it is also
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considered that an appliance of type 1, 3 & 4 can operate
only in a single time set e.g., either set 1 or set 2 or set
3. However, the uninterruptable appliances (S. no. 5 - 15)
under type-2 have been granted the freedom to operate in
different sets, e.g., one appliance in set 1 and another in set
2 or set 3. Although the final allocated set for the complete
operation of a single type-2 appliance shall be only one.
This means an appliance can’t perform half of its task in
set 1 and another half in set 2 or set 3. The HEMC will
schedule the appliances in each time-set according to the
user’s choice and choose the best time set (Sm). Based on
this, the nomenclature of scenarios from 9 S1 to 16 S3 is
done i.e., scenarios 9 S1, 9 S2 & 9 S3 represent that the
scheduling of appliances of types 1, 3 & 4 will be done only
in S1, S2 & S3, respectively and of type 2 will be done in
either of the three sets for each user with all the considered
conditions of the scenario 9. Finally, the HEMC will choose
the best time set among 9 S1, 9 S2 & 9 S3.
Scenario 9: Scheduling of the appliances with RTP tariff
structure under distributed-time bound strategy.
Unlike scenario 1, this scenario has been modified to al-
low greater flexibility in DRP, giving additional options to
operate the appliances, as mentioned under the heading of
distributed-time bound strategy. After scheduling, the total
bill paid by the customer in scenario 9 is found to be 599.19
INR for time vectors set-1 (S1), 591.44 INR for set-2 (S2),
and for the set-3 (S3) bill is found to be 578.39 INR. Hence,
in scenario 9 the appliances categorized under type-1, 3 &
4 are finally scheduled according to the time vector set-3
(S3) considering the minimum electricity bill for the users.
The combined load curve for scheduling according to the
time vector set-3 is shown in Fig. ??.
It is clearly observed in Fig. ?? that the maximum demand
from the grid is 4.877 kW with an average of 1.53 kW;
hence, PAR is calculated as 3.186. For a clear understand-
ing of the effect of the distributed-time bound strategy, a
comparison of different parameters obtained from scenario
1st and scenario 9 S3 with the base case is shown in Fig. ??.
It is clearly visible from Fig. ?? that in every aspect, the
DTBS performs better.
Scenario 10: A DF has been included for early scheduling
of high-priority appliances, as in scenarios 2nd and 6th.
While evaluating the results, another intriguing variance is
discovered, as shown in Table 4. All of the scenarios are
selected to operate in time vector set-3; however, type-2 ap-
pliances in scenarios 9 and 10 had the option to run in other
sets as well, but due to the minimum cost found in set S3, it
was chosen by HEMC. In each scenario highlighted in Ta-
ble 4, the operating slots for the appliances 7th and 15th are
different. In scenarios 9 S3 and 10 S3, type-2 appliances
are scheduled in set-1 (S1) and set-2 (S2), respectively, de-
spite having the option to schedule in set-3 (S3) itself.
Similarly, other scenarios displayed in Table 4 have been
tested for their operating time, peak demand, PAR, and
other parameters, but due to limited space, all plots cannot
be displayed.
Scenario 16: Scheduling of home appliances with DF and
wind power in g2h and h2g mode.
This scenario is also based on the DTBS with a TOU tariff

and bidirectional power flow between houses and the grid.
The scheduling of type 1, 3& 4 appliances in S3 yielded the
lowest electricity cost among the three-time vectors. Users
have the same overall power usage in this scenario, but their
appliances are scheduled in different time slots, resulting
in a more flattened load curve. This resulted in a reduction
in peak load for each customer, as well as a reduction in
overall power drawn from the grid due to impaired schedul-
ing. Power consumption by each appliance, available wind
power, and grid power used by the user 1st can be seen
in Fig. ??. Due to the availability of distributed slots, it
was possible to schedule appliances in the slots where wind
power was available and could fulfill all the constraints
also. As seen in Fig. 16, wind power is supplied back to the
grid at higher rates during peak load times due to enabling
bidirectional power flow and an objective function meant
to reduce electricity costs. Due to this enabling, the com-
bined electricity cost by three users is found to be negative,
i.e., ’-6.84 INR’, which means the utility will pay the users.
Although there is an additional comfort fee of 62.36 INR,
bringing the total bill to 41.82 INR, it can be observed that
the overall electricity bill decreases significantly from the
base case to scenario 16.

4. Result summary
Some key parameters and outcomes of the objective func-
tion are presented in Table 5 for a comparative analysis
of all the scenarios and to visualize a summarized picture
of the study. The rows with the same colour in Table 5
depict the scenarios with all similar conditions except the
preference techniques used for different slot selections in
the scenarios. For example, in scenarios 1st and 9th, RTP
and wind energy sources are used; however, in scenario 1st ,
a single time-restricted strategy is applied. In scenario 9th

proposed DTBS is applied as users’ preference technique.
It has been found that the total electricity consumption cost
(Q) in the base case, i.e., the random scenario is 881.6 INR.
On implementing the RTP tariff in scenario 4, the cost has
been reduced to 81.4 percent compared to the base case and
found to be 163.7 INR. Similarly, with the TOU tariff in
scenario 8, the total cost has been reduced to 86.74 % com-
pared to the base case and found to be 116.9 INR. Among
all the tested scenarios, the minimum electricity cost paid
to the utility is found in scenario 16 with time set (S3) and
calculated as 41.8 INR, which is a significant reduction of
about 95.25 percent compared to the base case and hence
fulfills the objective of the problem formulated. Enabling
the bidirectional power flow is beneficial for achieving max-
imum output from renewable energy sources. While com-
paring the two strategies in scenarios 8

t h and 16th, it can
be concluded from the results that DTBS provides a 64.22
percent cost reduction compared to a single restricted time-
set approach with the inclusion of RER. This comparative
cost reduction can be observed in all related scenarios in
Table 5. This significant reduction in electricity prices may
encourage customers to participate in DRP and ensure its
successful implementation. Finally, it can be commented
by analyzing all the results that the TOU tariff structure
will prove to be a milestone in Gujarat’s power distribution
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sector for the benefit of utility and customers both because
electricity bill is found to be minimum in the case of TOU.
In the base case, the peak of 9.02 kW has been found with
an average of 1.53 kW; thus, PAR has been calculated 5.89.
By successfully implementing the peak limiting strategy,
peak demand has been limited to 5 kW. Table 5 shows that
the minimal peak of value 2.64 kW has been achieved in
scenario 15 S2, which is reduced by 70.8 percent from the
base case. It has been found that the wind energy source
has been maximum utilized in scenario 16. Different en-
ergy costs, peak demands, and PAR have been achieved in
scenarios 16 S1, 16 S2 & 16 S3. Now the selection of the
optimized set depends on the set priority of these parameters
based on the agreement between the utility and the users. In
this work, minimization of electricity consumption bill was
the priority; hence, 16 S3 has been selected for scheduling
purpose by the HEMC.
A conflict has been found in the results of PAR, i.e., a higher
value of PAR is achieved in the scenarios in which bidirec-
tional power flow (h2g mode) was enabled, e.g., scenario
16 S3, where the PAR value is found as 22.26. Scenario 16
is a modified version of scenario 5 in a manner by inclu-
sion of h2g mode and DTBS strategy. The peak demand in
scenario 5 was found to be 4.88 kW, average 1.53 kW and
thus PAR was calculated as 3.19. However, the peak power
in 16 S3 was reduced to 4.27 kW by enabling h2g mode
compared to scenario 5; but the reduction in average power
drawn from the grid is 0.19 kW, which is a significant drop
compared to scenario 5, hence, giving a higher PAR value
in all scenarios having h2g mode. Further, there are numer-
ous slots in the scenarios with h2g mode where no power
is drawn from the grid leading to reduced average power
drawn from the grid and therefore increasing the PAR value
compared to the scenarios without h2g mode.

5. Conclusion
The paper is focused on the issue of management of RERs
and household loads in a distributed network. To get a more
flexible and efficient load distribution, a DTBS has been
proposed. The main purpose of the proposed strategy was
to give more freedom to the occupant by giving multiple
choices for operating its appliances. On the implication
of the proposed strategy, the HEMC scheduled the appli-
ances and local sources to reduce the peak demand, overall
electricity cost and customers’ discomfort. The schedul-
ing has been done with the support of RTP and TOU-type
pricing DRP. Various scenarios have been presented in the
case study by including different pricing schemes and in-
clusion of sources. In the base case, no wind source has
been considered and the customers have opted for a typical
self-scheduling; which caused the overall electricity bill to
be 881.6 INR. In other scenarios, DF, wind generator, and
the DTBS strategy have been included with different pricing
tariffs. The effect of bidirectional power flow of households
has also been included in scenarios 4, 8, 12 and 16. Con-
sidering scenarios 12 S3 and 16 S3 as the final scenarios
including all the factors for RTP and TOU pricing respec-
tively, the overall electricity costs were found to be 72.8
INR and 41.8 INR respectively which is nearly 91.74 % and

Figure 1. RTP pricing for Gujarat state.

Figure 2. Wind power provided by the wind generator.

95.25 % lesser compared to the base case. The effectiveness
of the proposed DTBS strategy can be observed by compar-
ing scenarios 8 and 16 S3 since the only difference in both
scenarios is the strategy of slot selection. The overall elec-
tricity bills in the scenarios were found to be 116.9 INR and
41.8 INR, which is a significant reduction of nearly 64.24
%. Thus, the results clearly showed the effectiveness of the
proposed strategy. Although the strategy has shown tremen-
dous potential in reducing the electricity cost but also has
some limitations. The proposed strategy will need a heavy
and fast controller for fast and complex calculations in case
of a large number of users. EV has not been considered in
this analysis, although it might be employed in future work
to increase the self-utilization of wind power and further
reduce the PAR. A forecasting unit can also be used in the
future to determine the tariff and weather parameters more
accurately which may further result in lower cost.

6. Nomenclature
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Table 4. Scheduling of appliances under different scenarios for user 1.

Scenarios with scheduled slots for user 1

Appliance S.No. Scenario 1 S3 Scenario 2 S3 Scenario 9 S3 Scenario 10 S3

1 45-55,57-61 45-60 45-58 & 60,61 45-60

2 1-12 & 85-96 1-12 & 85-96 1-12 & 85-96 1-12 & 85-96

3 85-96 77-88 85-96 77-88

4 45-52 45-52 45-52 45-52

5 41-44 41-44 52-55 (S2) 52-55 (S2)

6 25-28 25-28 49-52 (S1) 49-52 (S1)

7 45-48 37-40 87-90 (S1) 49-52 (S2)

8 37-40 37-40 57-60 (S1) 57-60 (S1)

9 33-36 33-36 85-88 (S2) 85-88 (S2)

10 30-31 29-30 75-76 (S1) 69-70 (S1)

11 87-88 81-82 95-96 (S1) 89-90 (S1)

12 90-91 91-92 07&08 (S1) 07&08 (S1)

13 43-48 43-48 50-55 (S1) 50-55 (S1)

14 91-96 90-95 91-96 (S3) 91-96 (S3)

15 25-30 26-31 43-48 (S2) 65-70 (S1)

16 1,8,10-12,14, 16-20,23,24,93,94,96 1,8,10-12,14,16-20,23,24, 93-95 10-14,16,17,19, 23,24,89-92,95-96 10-14,16, 17,19, 23,24,89-92,95,96

17 89-96,49-64,1-12 89-96,49-64,1-12 89-96,49-64,1-12 89-96,49-64,1-12

18 25-40,69-96 25-40,69-96 25-40,69-96 25-40,69-96

19 13-48,65-88 13-48,65-88 13-48,65-88 13-48,65-88

20 all all all all

Figure 3. Flowchart of proposed energy scheduling strategy.

Figure 4. Scheduling of the appliances and overall power demand from
the grid for the base case.
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Table 5. Comparative analysis of the scenarios.

Scenario Q1 Q2 Q Combined Relative to the base case
Grid power (kW) Peak power (kW) Average power (kW) PAR Peak PAR

Base case 881.6 0.0 881.6 146.9 9.02 1.53 5.89 0.0% 0.0%
1 658.2 0.0 658.2 146.9 4.93 1.53 3.22 -45.4% -45.4%
2 670.4 65.3 735.8 146.9 4.78 1.53 3.13 -47.0% -47.0%
3 309.3 75.8 385.1 67.0 4.78 0.70 6.86 -47.0% 16.3%
4 98.3 65.3 163.7 18.4 4.62 0.19 24.09 -48.8% 308.7%
5 607.4 146.9 754.3 146.9 4.88 1.53 3.19 -45.9% -45.9%
6 623.2 0.0 623.2 146.9 4.58 1.53 3.00 -49.2% -49.2%
7 272.8 76.8 349.5 67.2 4.63 0.70 6.62 -48.7% 12.3%
8 53.4 63.5 116.9 18.4 4.33 0.19 22.59 -52.0% 283.2%

9 S1 599.2 0.0 599.2 146.9 4.85 1.53 3.17 -46.2% -46.2%
9 S2 591.4 0.0 591.4 146.9 4.88 1.53 3.19 -45.9% -45.9%
9 S3 578.4 0.0 578.4 146.9 4.88 1.53 3.19 -45.9% -45.9%

10 S1 603.9 58.6 662.5 146.9 4.93 1.53 3.22 -45.3% -45.3%
10 S2 600.6 62.8 663.4 146.9 4.98 1.53 3.25 -44.8% -44.8%
10 S3 586.8 58.1 644.9 146.9 4.99 1.53 3.26 -44.7% -44.7%
11 S1 194.9 62.7 257.6 48.7 2.92 0.51 5.75 -67.7% -2.4%
11 S2 197.1 68.4 265.5 50.1 2.68 0.52 5.14 -70.3% -12.8%
11 S3 199.3 60.8 260.1 51.1 3.02 0.53 5.67 -66.5% -3.7%
12 S1 31.8 58.6 90.4 18.4 3.59 0.19 18.74 -60.2% 218.0%
12 S2 28.5 62.8 91.3 18.4 3.59 0.19 18.74 -60.2% 218.0%
12 S3 14.7 58.1 72.8 18.4 3.71 0.19 19.33 -58.9% 227.9%
13 S1 553.5 0.0 553.5 146.9 4.96 1.53 3.24 -45.0% -45.0%
13 S2 551.2 0.0 551.2 146.9 4.76 1.53 3.11 -47.3% -47.3%
13 S3 539.4 0.0 539.4 146.9 4.88 1.53 3.19 -45.9% -45.9%
14 S1 558.3 58.4 616.7 146.9 4.97 1.53 3.24 -45.0% -45.0%
14 S2 558.2 59.8 618.1 146.9 4.79 1.53 3.13 -46.9% -46.9%
14 S3 549.3 62.4 611.6 146.9 4.67 1.53 3.05 -48.3% -48.3%
15 S1 171.2 64.6 235.8 47.3 3.15 0.49 6.38 -65.1% 8.2%
15 S2 180.7 80.6 261.3 50.1 2.64 0.52 5.05 -70.8% -14.3%
15 S3 184.5 61.3 245.8 52.3 2.86 0.55 5.24 -68.3% -11.0%
16 S1 - 11.5 58.4 46.9 18.4 4.00 0.19 20.85 -55.7% 253.7%
16 S2 - 11.6 59.8 48.3 18.4 3.59 0.19 18.74 -60.2% 218.0%
16 S3 - 20.5 62.4 41.8 18.4 4.27 0.19 22.26 -52.7% 277.7%

41.8 2.64 1.53
Min Min Max

Table 6

A Set of appliances yh,n,a Binary variable
N Number of users or houses Tn,a Total operating time of interruptible loads
H Set of slots Sh,n,a The binary state vector of an appliance

Fh
n,a Delay factor Ch Tariff rate applied

Wn,a Total energy consumption by an appliance Qn,a Energy consumption vector of an appliance of nth user
Wmax Maximum energy consumption in any slot Ph

w,n Wind power available for the nth user at slot h
Ymax

n,a /Ymin
n,a Maximum/minimum energy level of interruptible loads

Figure 6. Variation caused by DF in the load curve of user 1.

Figure 5. Load curve for users with an RTP tariff structure.
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Figure 16. Grid power consumed by users in different time-zone of TOU
tariff.
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