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Abstract:
Heroin is a highly addictive drug with devastating effects on various parts of the body, including the digestive
system, nervous system, and mental health, and it can lead to premature death. One of the most destructive
impacts of heroin use is on the brain. Electroencephalograms (EEG) indicate the brain’s activity in the
physiological and psychological states of heroin addicts. Identifying distinguishing features is crucial for
processing these signals and determining the differences between the EEGs of healthy individuals and addicts.
The frequency and time domain features extracted from different channels of EEG vary, but identifying
distinguishing features can aid in better analysis of these signals. This article uses the Davies-Bouldin criterion
to determine distinguishing frequency and time domain features. EEGs of heroin addicts (15 individuals)
and healthy individuals (15 individuals) were extracted from 16 different channels. The distinguishing
feature with the lowest Davies-Bouldin index value was selected. The results of this study show that in
people addicted to heroin, the frequency power spectrum in the upper alpha subband of the O1 channel has
decreased. Additionally, approximate entropy is increased in the Cz channel of heroin addicts. To evaluate
the distinguishing features, support vector machine classification has been used to distinguish addicts from
healthy individuals. The sensitivity and accuracy of distinguishing an addicted person from a healthy person
in the approximate entropy feature are 91.50% and 91.81%, respectively, and in the power spectrum feature
in the upper alpha subband of the O1 channel, they are 95.92% and 92.40%, respectively. Compared to other
studies, the obtained results confirm the distinction and superiority of these features in terms of precision and
accuracy. According to the results, the analysis of frequency and time domain features of brain signals can
help to better understand the effects of heroin consumption on brain activity. This study may help provide
solutions to improve the treatment and prevention of heroin addiction.
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1. Introduction

The consumption of narcotics, by affecting neurotransmit-
ters in various brain regions, particularly the reward area,
leads to feelings of pleasure, which subsequently induces
changes in other areas and functions of the brain. Diamor-
phine, or heroin, is a highly addictive narcotic derived from
morphine, typically seen as a white or brown powder. Long-
term heroin addiction extensively impacts an individual’s
body and life, causing sexual and psychological disorders,
gastrointestinal issues, liver and kidney problems, and dam-
age to heart, vascular, and brain health. In 2019 alone,
heroin and other potent narcotics led to the deaths of over
130,000 people worldwide. Heroin use significantly impacts

an addict’s brain, impairing their ability to properly interact
with their surroundings [1].
EEG processing for addiction treatment is one of the ef-
fective ways to respond to this complex challenge [2, 3].
Numerous studies have been conducted to identify distin-
guishing features or affected areas resulting from heroin use.
The first step in EEG processing involves recording the sig-
nals. After recording and storage, pre-processing is a critical
phase, as the signals are undoubtedly influenced by noise
and external interferences [4]. Once the EEG is cleared of
artifacts and interferences, feature extraction is performed
due to the vast amount of electroencephalogram (EEG) sig-
nal data collected [5, 6]. The aim of feature extraction is to
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reduce the amount of data by creating new features from
the initially measured dataset. The extracted features con-
tain pertinent information for diagnosis or treatment [7, 8].
Feature extraction occurs in the time domain, frequency do-
main, or time-frequency and nonlinear domains [9]. Some
studies have assessed the differences in the power spectrum
frequency between healthy individuals and heroin addicts
using various statistical methods [10, 11]. Frequency analy-
sis is among the efficient methods in this field [12, 13].
In [14], the P300 component was examined in heroin ad-
dicts, individuals who had quit heroin, and healthy individ-
uals during a short-term memory test. The addicted indi-
viduals exhibited higher impulsivity, which manifested as
abnormalities in the P300 component response time. In [15],
the P300 component of EEG signals from individuals at-
tempting to quit heroin was analyzed to identify and classify
heroin addicts, utilizing these results in deep learning-based
classifiers. In [16], the P300 component of event-related
potentials (ERP) in healthy individuals and heroin addicts
was studied, using a genetic algorithm for feature selection.
In [17], the P300 component in EEG signals was examined
in ten Heroin addict and ten healthy individuals. In [18], the
EEG signals of heroin addicts showed a decreased alpha-to-
theta power ratio in the T6 region. In [19], the differences
in the beta subband (12−22 Hz) and the physiological or
operational relationships between different EEG bands in
heroin addicts were explored. In [20], a direct correlation
between the lower alpha subband in the central brain region
(C3, C4, and Cz channels) and the duration of heroin abuse
was observed, particularly in the right hemisphere (C4 chan-
nel). In [21], the relative power and central frequency of
EEG subbands in heroin addicts were compared to those
of healthy individuals, specifically in the alpha and beta
subbands. In [22], transcranial magnetic stimulation and
electroencephalography (TMS-EEG) were used to examine
cortical plasticity characteristics in individuals with heroin
use disorder compared to healthy individuals.
EEG studies have shown that heroin addicts exhibit low-
voltage background activity with reduced alpha rhythm,
increased beta activity, and heightened low-amplitude theta
and delta waves in central regions. In [23], after extracting
the P300 component, a multi-resolution wavelet transform
was applied. The results indicated that the P3 channel more
significant changes in the wavelet transform for Heroin ad-
dict. In [24], the power spectrum of the P300 and P600
components was analyzed. The results indicate that the
power spectrum in the alpha 2 subband in the frontal and
central regions is greater than in other areas, showing a sig-
nificant difference between healthy individuals and addicts
in these regions. In [25], the changes in the P300 com-
ponent of EEG signals recorded from addicts and healthy
individuals who have used methadone were investigated.
This study employed wavelet transform to examine the
P300 component, revealing that the P300 component of
methadone users significantly differs from that of healthy
individuals. In [26], nonlinear features in the alpha subband
at rest were examined in individuals who had quit heroin
compared to a healthy group. It was found that irregular neu-
ron oscillations in individuals who had quit heroin result in

higher nonlinear dynamics. In the study conducted in [27],
the Montreal Cognitive Assessment and statistical analysis
with a significance level of 0.05 were used. The results
showed a significant difference in EEG between Heroin
addict and healthy individuals. In [28], disruptions in the
anterior cerebellum and prefrontal circuits were observed in
heroin-dependent individuals, indicating an imbalance be-
tween local neural activity and neural network connectivity.
Table 1 compares studies conducted in the field of frequency
domain feature analysis. These studies have examined fre-
quency domain features, such as the power spectrum or the
P300 component alone, which may have overlooked some
important information necessary for distinguishing between
healthy individuals and addicts. Given the dynamic nature
of EEG, it is essential to consider time domain features
as well. Research shows that the P300 component differs
among heroin addicts, individuals who have quit heroin,
and healthy individuals during short-term memory tests.
The study in [29] examined the coherence of EEG power
in 18 heroin-dependent individuals and 12 healthy controls.
The results indicate that heroin-dependent individuals have
higher relative beta 2 power and gamma coherence in the
left hemisphere compared to the control group. In [30],
focusing on the temporal dynamics and frequency charac-
teristics of EEG signals, the amplitude of low-frequency
fluctuations (ALFF) was compared between addicts and
healthy individuals.
The results show a significant positive correlation between
increased ALFF and the dose of methadone used, suggest-
ing that reduced ALFF is associated with heroin use.
A study [31] investigated the relative power and central
frequency of the alpha (α) and beta (β ) subbands in both
addicts and healthy individuals. Significant differences
were observed in these features. The analysis of EEG sig-
nals revealed that over 70% of cases showed relatively low
alpha subband activity, increased beta activity, and a notable
amount of low-amplitude waves in the central brain regions.
In [32], the effects of heroin on the brain were evaluated
by studying the relationships between the power spectrum,
average EEG frequency, and the duration of heroin use. The
findings indicate that changes in alpha 2 subband frequency
are more pronounced in the frontal and central areas and
are associated with the duration of heroin use. A decrease
in the average frequency of the alpha 1 subband was more
prominent in the central, temporal, and axial regions, mainly
observed in heroin addicts using high doses of the drug. The
power spectrum of brain electrical activity in patients corre-
sponds with the duration of addiction recovery. The results
suggest that heavy heroin use causes changes in neural os-
cillation frequency.
Table 2 summarizes the comparison of studies on the ef-
fects of EEG signal changes. Although various features
for linear and nonlinear frequency characteristics have been
considered. The main challenge remains the inefficiency
of the Fourier transform for analyzing dynamic signals. To
address this, several studies have divided EEG signals into
short, overlapping time intervals. However, it seems that
time-domain features may offer a more effective approach
for analyzing these signals.
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Table 1. Comparison of research background in frequency domain characteristics.

Subject Ref. Method Results Method Drawback

P300 Component Analysis

[14]
Analysis of addicts during
and after treatment, examining
various disorders.

Only examined P300
amplitude data

Limited to the P300
amplitude data

[15]
Use of P300 component for
classification through deep learning

Only examined P300
amplitude data

Limited to the P300
amplitude data

[16]
A comprehensive study of
individuals on the P300 ERP
component, feature selection

Small sample size and
limited generalizability

Small sample size and
limited generalizability

[17]
A comprehensive study
of Heroin addict

Only examined P300
amplitude data

Limited to the P300
amplitude data

[23]
A comprehensive study of
Heroin addict

Only applied wavelet
transform to the P300
component

Limited to wavelet
transform application
on P300

[25]
Study of Heroin addict
undergoing methadone treatment.

Only examined the P300
component; statistical tests
were incomplete.

Incomplete statistical
tests on the P300 component

Relative Power Analysis
[18]

Analysis of all subbands to determine
differences between healthy
individuals and addicts

Considered only one
power spectrum feature

Limited to one power
spectrum feature

[19]
Analysis of all subbands to
determine correlations

Only examined central
frequency feature

Limited to central
frequency feature

[24]
Analysis of all head regions
across all subbands

Limited to one feature
examination

Limited to one
feature examination

Subband and Channel Comparison

[20]
Analysis of physiological and
operational relationships between bands.

Only examined differences
in the beta subband.

Limited to beta
subband analysis.

[21]
Analysis of the relationship between the
Wechsler Adult Intelligence Scale and
EEG signal power changes

Only displayed disruptions
in the right hemisphere,
not the left

Did not consider left
hemisphere disruptions

[22]
Analysis of drug effects on EEG channels
in the cortex, examining all head regions
across all subbands

Compared to differences
with evoked potentials,
the low-voltage background
feature was ineffective.

Ineffective low-voltage
background feature

[26]
Comprehensive identification of affected
areas in this study

Examined connectivity in
all brain regions, limited
to the alpha subband

Limited to alpha subband
analysis

[28]
Utilized a genetic algorithm for feature
selection and classification of healthy
individuals versus addicts

Detected an imbalance
between local neural activity
and neural network connectivity

Only one type of feature
was extracted, and the feature
selection focused primarily
on dimensionality reduction.

Statistical Comparison [27]
Demonstrated the correlation between
local neural activity and neural network
connectivity

Did not consider the
functional correlation of
brain regions with each other

Did not consider inter-regional
brain function correlation

This paper aims to identify appropriate and distinctive fea-
tures that differentiate addicts from healthy individuals, us-
ing a feature selection method. The innovations of this study
include:
- Identifying distinguishing features for detecting addiction
in EEG
- Exploring both time-domain and frequency-domain fea-
tures to highlight distinguishing characteristics
Based on the research conducted and the results obtained,
there is still no consensus on the type of distinguishing
feature. Therefore, the goal of this paper is to select ap-
propriate and distinguishing features among addicts and
healthy individuals. The structure of the paper is as follows:
In section 2, the research database will be reviewed. In
section 3, the proposed method for selecting distinguishing
features in healthy and addicted individuals will be pre-
sented. Section 5 will cover the evaluation and analysis of
the results. Finally, section 6 will provide the conclusions
and recommendations.

2. Database
This study utilized a database of EEG signals from both
addicts and healthy individuals [33]. The database includes

EEG signals recorded from 16 channels based on the inter-
national 10− 20 system. Electrode placement (as shown
in Fig. 1) involved referencing the right ear and grounding
to the frontal channel (Fpz), with a sampling frequency set
at 256 Hz. It is worth noting that the EEG signals were
recorded using the gUSBamp device, manufactured by g.tec
Medical Engineering GmbH.
In this investigation, 15 addicts who were in the process of
quitting heroin and 15 healthy individuals with no history of
drug, alcohol use, or smoking participated voluntarily and
consciously. All participants were male and right-handed,
and each provided informed consent before participating
in the study. Following this, both groups completed the
28-item General Health Questionnaire (GHQ-28). Addi-
tionally, the addicts were asked to complete the 45-item
Heroin Craving Questionnaire (HCQ-45), designed to as-
sess their craving and desire related to heroin addiction.
This questionnaire evaluates the extent of drug dependency
and confirms addiction status. It includes questions address-
ing physical symptoms, anxiety/insomnia, social function-
ing impairment, severe depression, mood disorders, anxiety
disorders, childhood disorders, and other related issues.
Participants with psychiatric disorders or a genetic/family
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Table 2. Differences in EEG signals between healthy individuals and addicts.

Ref. Method Results Method Limitation

[29]

Examination of the coherence of
the power spectral density of EEG
to determine differences between
hemispheres

Examined all subbands to determine
differences between healthy and addicted
individuals in the hemispheres

Only the coherence of the power
signal was examined
(one feature is not sufficient)

[30]
Dynamics and frequency
characteristics of EEG signals

Examined differences in time and
frequency domain characteristics
across all head points and brain areas
Examined the impact of drug use on
addicts and healthy individuals

Did not determine the amount
of methadone used for treatment

[31]
Examination of relative power
and central frequency of alpha
and beta subbands

Examined two features simultaneously
in the frequency domain

Differences were examined in only
two subbands between healthy
and addicted individuals

[32]

Examination of the relationship
between power spectrum and mean
frequency of EEG and duration of
heroin use

- Examined drug-related disorders in the
treatment process- Examined all subbands
to determine the relationship

Only one feature was considered
for the relationship analysis

This study
Determination of distinguishing
features in the time and frequency
domain

Investigating all subbands and channels
in both frequency and time domain
features- Determined the heroin in the
brain affected - Applied an appropriate
method for determining distinguishing features

Did not determine the relationship
between brain regions in the
examined frequency and time
domain features

history of neurological conditions were excluded from the
study. Table 3 provides further details about the partici-
pants.
It is important to note that EEG recordings were made in a
low-light room with minimal head movement. For the ad-
dicted participants, the last consumption of heroin occurred
at least three days before the EEG recording. Additionally,
records of epilepsy and the use of psychotropic drugs were
taken into account.

Figure 1. Electrode Placement.

3. Proposed method
The block diagram of the proposed method is shown in
Fig. 2. As illustrated, the proposed method includes pre-
processing, feature extraction, and feature evaluation. Each
section is briefly explained as follows.

3.1 Preprocessing
MATLAB software was used to process and analyze the
recorded data. Initially, a 50 Hz notch filter was applied
to remove power line noise. Subsequently, a Butterworth
band-pass filter with a range of 0.4 to 45 Hz and a 6th-order
filter were used to eliminate additional noise.

3.2 Extracted features
In this study, both frequency and time domain features were
extracted to identify distinguishing characteristics. Time
domain features include permutation entropy (PE), approx-
imate entropy (ApEn), wavelet entropy, Petrosion fractal
dimension, Katz fractal dimension, box-counting fractal
dimension, and frequency domain features such as power
spectrum in various sub-bands. Approximate entropy mea-
sures the regularity and variability in time series data by
comparing similar patterns within the data vector. A sample
vector of dimension mmm is defined as a sliding window of
the signal, as follows:

u[i] = [x[i]x[i+1] · · ·x[i+m−1]]T (1)

where u[i] is the output after windowing, x[i] is the input
signal, mmm is the window length, and iii is the sample
index within the defined window. The self-similarity of
the vector generated from the signal is defined by Ci,m self-
similarity based on the window applied to the signal is given
by:

Ci,m =
1

N −m+1

N−1

∑
j=1

θ(r−∥u(i)−u( j)|∞) (2)

where θ(x) is the step function, which is defined by (3).

θ(x) =

{
1 x ≥ 0
0 x < 0

(3)

when X has the highest self-similarity, u( j) and u(i) are
very close to each other, and the value of will be maximized.
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Table 3. Characteristics of participants in the study.

Healthy Controls Addicts Attribute

15 Men 15 Men Number of Participants

38.34 years 32.27 years Age (Mean)

15 years 8.67 years Education (Years-Mean)

4 Married, 11 Single 8 Married, 7 Single Marital Status

- 11.2 years Duration of Heroin Use (Years–Mean)

- 1.2 grams Daily Dose of Heroin (Grams–Mean)

- 10.07 days Duration of Abstinence (Days - Mean)

Based on the calculated parameters, ApEn computes the
internal similarity index across all possible transitions in
the sample vectors, indicating the length and resistance to
changes. The approximate entropy ApEn is computed using
the relation (4) [34]:

ApEn(X ,m,r) =
1

N −m+1

N−m

∑
i=0

logCi,m(r)− (4)

1
N −m

N−m−1

∑
i=0

logCi,m−1(r)

where Ci,m represents the self-similarity, m is the window
length, N is the total number of signal samples, and r is the
overlap value in the window. Permutation entropy (PE) is a
measure of the complexity of a signal. For a sample vector
u[i] after windowing and a permutation πk with order m,
which includes m! patterns, the probability of a permutation
pattern for all k = 1, 2,· · · , m! is defined as the probabil-
ity of occurrence of a sample vector with similar patterns.
Permutation entropy calculates the likelihood that the sam-
ple vector has a pattern similar to the permutation pattern.
Permutation entropy is defined as follows [35].

P(πk)
1

N −m+1

N−m

∑
i=0

f (u[i]πk) (5)

where N is the total number of samples. The following rela-
tion applies when u[i] and have similar patterns; otherwise,
the value is zero.

f (u[i]πk) = 1 (6)

In this case, a pattern with order u[i] is defined according to
the elements of the original signal. Therefore, PE is defined

Figure 2. Block diagram of the proposed method.

by relation (7) [36].

PE =−
m!

∑
k=1

p(πk) log(πk) (7)

Wavelet entropy expresses the uncertainty of a process by
calculating its wavelet transform [37].

WEn(X ,m,B) =
1

log(B)

B

∑
i=1

W (pi) log(W (pi)) (8)

where W is the discrete wavelet transform applied to the
probability distribution function, X is the signal, m is the
wavelet transform level, and B is the wavelet transform
components. The Katz fractal dimension is a mathematical
index that can measure the complexity of a signal [38]. It
is a fast algorithm for calculating fractal dimensions and is
used to measure signal complexity [39, 40].

Lm(T ) =
1
T
[

N−m
t

∑
I=1

|x[m+ iT ]− x[(i−1)T ]|] N −a
[N−m

T ]T
(9)

where x is the EEG, the partial time series over the time in-
terval T , and the start time m for m = 0,1,2,· · · are calculated.
N is the total number of samples in a signal. The fractal
dimension method, similar to a box-counting method, acts
as a perimeter measurement method, where the signal is
covered by a grid. The line length, sometimes considered
the curve length, is the overall vertical length of the signal
used to calculate the fractal dimension of the signal. Fig. 3
shows the type of calculation for this method.
The Petrosian fractal dimension is a fast algorithm for cal-
culating fractal dimension, operating more quickly than the
Katz fractal dimension. This fractal dimension is computed
from a binary sequence, so the first step is to convert the
input signal into a binary sequence, for which various meth-
ods exist. To calculate the Petrosian fractal dimension, the
difference between consecutive samples is calculated, and
based on whether the calculated value is greater or less than
the standard deviation of the window, it is assigned a value
of one or zero, respectively. Finally, the fractal dimension
is calculated from the binary sequence as follows [42, 43]:

D =
log10(n)

log10(n)+ log10(
n

n+0.4ND
)

(10)
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Figure 3. Illustration of the box-counting method by counting the black
rectangles [41].

where n is the length of the signal (number of points) and ND
represents the number of sign changes (number of dissimilar
pairs) in the generated binary sequence. In the frequency
domain, the power spectrum feature in each sub-band can
be used. EEG signals are typically identified and examined
in four frequency bands: delta (0−4 Hz), theta (4−8 Hz),
alpha (8− 13 Hz), and beta (15− 30 Hz), along with the
sensory-motor rhythm (12− 15 Hz). EEG is unique for
each individual. Therefore, calculating the individual alpha
frequency (IAF) and transition frequency (TF) can be used
for more precise analysis.
In physiological studies, the EEG power spectrum reflects
the number of neurons firing simultaneously. The power
spectrum of the signal is obtained from the Fourier trans-
form of the EEG. Based on the overlap and Welch’s method,
the power spectral density is calculated using the following
relation [44]:

P(i)
XX ( f ) =

1
LU

|
L−1

∑
n=0

W (n)Xi(n)e− j2π f n|2 (11)

where W (n) is the window, L is the window length, and x
is the segment of the signal within the window. U is the
window normalization factor and is calculated as follows:

U =
1
L

L−1

∑
n=0

W 2(n) (12)

The signal power using Welch’s method is calculated by the
following formula:

Pi
XX ( f ) =

1
K

K−1

∑
i=0

p(i)XX ( f ) (13)

The amplitude of the EEG signal for each person depends
on various factors such as the anatomical and physiological
characteristics of the brain, surrounding tissues, and elec-
trode impedance. These factors vary for each individual and
cause significant variations in the absolute power spectrum
of the EEG signal. To compensate for these variations, the
relative power spectrum is calculated as follows:

Pr( f ) =
Pa( f )

∑Pa( fi)
(14)

where Pr( f ) relative is power spectrum at frequency f , and
Pa( f ) is the absolute power spectral density at the same

frequency. Research has shown that the frequency sub-band
ranges of EEG are unique to each individual and vary from
person to person; therefore, the frequency range of each
sub-band should be calculated separately for each individual
[45]. In most individuals, after closing their eyes and being
in a state of alertness, the alpha rhythm becomes dominant.
When a person opens their eyes and does not engage in any
specific mental activity, the alpha rhythm is blocked, and no
dominant spectrum is observed in the EEG. By obtaining
the baseline EEG of an individual in both the eyes-closed
and eyes-open states, the frequency range where the power
spectrum of the eyes-closed state diverges from that of
the eyes-open state can be identified. With this identified
frequency range, the individual alpha peak (IAP) for each
person can be calculated as follows:

IAP =
∑

f= f2
f= f1

Pr( f )× f

Pr( f )
(15)

where Pr( f ) represents the power spectrum of the signal,
f is the frequency in hertz, and f1 and f2 are the lower
and upper frequencies of the extracted alpha range for each
person. After calculating the IAP and T F for each individ-
ual, the range from T F −2 Hz to T F Hz is considered the
theta sub-band, T F to IAP−2 Hz as the individual’s lower
alpha sub-band, IAP− 2 to IAP Hz as the second lower
alpha sub-band, and IAP to IAP+2 Hz as the upper alpha
sub-band.

3.3 Davis-Bouldin index
In this analysis, the Davis-Bouldin index is used to evaluate
the extracted features. In this index, the similarity between
two features Ri j is defined based on the dispersion of fea-
tures Si and S j. The similarity between the two features is
defined as follows [46]:
1) Ri j≥ 0
2) Ri j = R ji
3) If Si and S j are both zero, then Ri j is also zero.
4) If S j > Sk and di j = dik then Ri j > Rik
5) If S j = Sk and di j < dik then Ri j > Rik
Typically, the similarity between two features is defined as
follows:

Ri j =
Si +S j

di j
(16)

where Si and S j represent the dispersion matrices of the
i− th and j− th features, respectively, which are calculated
using the following equations.

di j = d(Vi,Vj) (17)

Si =
1

∥Ci∥ ∑
x∈Ci

d(X ,Vi) (18)

Based on the aforementioned information and the definition
of similarity between two features, the Davis-Bouldin index
is defined as follows:

DB =
1
nc

nc

∑
i=1

Ri (19)

where Ri is calculated as follows:

Ri = max(Ri j), i = 1, · · · ,nc, j = 1, · · · ,nc (20)
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This index essentially calculates the average similarity be-
tween each feature and the most similar feature to it. In
fact, the higher the value of this index, the better the feature
produced.
In this paper, the Davies-Bouldin criterion is used to eval-
uate the extracted features. In this index, the similarity
between two features is defined based on the dispersion of
the features. The index calculates the average similarity
between each feature and its most similar counterpart. Es-
sentially, the lower the value of this index, the better the
feature separation. This feature selection method ensures
that the defined selection index condition is symmetric and
non-negative. The index calculates the similarity between
each cluster and its most similar cluster, averaging the result
across all clusters. As a result, it helps to select the most
distinctive features.

4. Results
In order to analyze EEG signals, time domain characteristics
such as approximate entropy (app entro), wavelet entropy
(wave entro), permutation entropy (permant entro), Katz’s
fractal dimension (Katz), Petrosian’s fractal dimension (Pet-
roshon), and box count (box count) in different channels, as
well as the frequency characteristics of the relative power
spectrum in various subbands, have been extracted from
all channels. These features are then used to differenti-
ate between groups. For evaluation, these characteristics
were calculated for all participants and compared using a
box diagram. The box plots illustrate the differences in
the extracted frequency characteristics across different sub-
bands. Fig. 4 shows the differences between time domain
features in all channels, with the comparison based on the
Davies-Bouldin criterion. The significance threshold is set
at 0.005. There is no significant difference in channels 10,
14, 15, and 9, while an increase in the value of the Davies-
Bouldin index is evident in addicted individuals. The time
domain feature distinguished from other features based on

the Davies-Bouldin value is the approximate entropy in the
Cz channel (channel number 11), with a numerical value
of 5.22. Fig. 5 presents a similar evaluation for frequency
features, which have shown a decrease in heroin addicts.
A significant difference has been observed in the upper
alpha subband in channel O1 (channel number 15). Ta-
ble 4 provides labels for Fig. 5. In Table 4, lower2 healthy
indicates the second lower alpha subband of healthy individ-
uals, lower2 heroin addict indicates the second lower alpha
subband of heroin-addicted subjects, lower1 healthy indi-
cates the first lower alpha subband of healthy individuals,
lower1 heroin addict indicates the first lower alpha subband
of heroin-addicted subjects, upper healthy indicates the up-
per alpha subband of healthy subjects, upper heroin ad-
dicted indicates the upper alpha subband of heroin-addicted
subjects, smr healthy indicates the sensory motor rhythm
of healthy subjects, smr heroin addicted indicates the delta
subband of healthy subjects, delta heroin addicted indicates
the delta subband of heroin-addicted subjects, theta healthy
indicates the theta subband of healthy subjects, and finally,
theta heroin addicted indicates the theta subband of heroin-
addicted subjects.

5. Discussion
The comparison is based on the Davis-Bouldin index, with
a significance level of 0.005. No significant differences
were observed in channels 10, 14, 15, and 9, though an
increase in the Davis-Bouldin index was noticeable among
individuals with addiction. The most distinguished time
domain feature, according to the Davis-Bouldin index, was
Approximate Entropy in channel Cz (number 11) with a
value of 5.22. Fig. 5 shows the evaluation of frequency fea-
tures, indicating a decrease in this feature among addicted
individuals. Significant differences were observed in the
upper alpha sub-band in channel O1 (number 15).
References [29] to [32] confirm the significant impact of
heroin use on the brain. Based on this study, the results,

Figure 4. Comparison of time domain features across all channels.
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Figure 5. Comparison of power spectrum across different subbands.

and the charts presented in Fig. 4, significant differences in
time domain features were observed only in Approximate
Entropy. Other time domain features such as Permutation
Entropy, Wavelet Entropy, Petrosian Fractal Dimension,
Katz Fractal Dimension, and Box Counting Dimension ei-
ther did not show significant differences or were not notable
enough to be used as distinguishing features.
The results for Approximate Entropy align with expecta-
tions, as drug use, particularly heroin, increases disorga-
nization in the thoughts of users. Fig. 6 shows the values
obtained for Approximate Entropy across all different chan-
nels. According to the results presented in this figure, the
Davis-Bouldin index shows significant differences in three
channels, while the remaining 13 channels exhibit substan-
tial differences, with channel 11 (Cz) showing the greatest
significant difference.
Fig. 7 compares various sub-bands, including upper alpha,
first lower alpha sub-band, second lower alpha sub-band,
sensorimotor rhythm (SMR), theta sub-band, and delta sub-
band across 16 channels. The results indicate a significant
difference in the upper alpha sub-band, with the most pro-
nounced difference observed in channel 15 (O1). Numerical

comparison results are shown in Fig. 7. In this research,
both frequency and time domain features were evaluated
using the Davis-Bouldin index. The power spectrum in the
upper alpha band at channel O1 (channel 15) had the lowest
Davis-Bouldin index value of 1.94. In the research con-
ducted by Saif et al., the evaluation using the Davis-Bouldin
index showed an increase in power spectrum across all chan-
nels, whereas a decrease in power spectrum was observed in
channel Fz. For selecting distinguishing features, the lowest
Davis-Bouldin index value is more effective. Therefore, in
this study, channel O1 with a Davis-Bouldin value of 1.94
is suggested as the most distinguishing frequency feature.
Based on the authors’ studies, there has been no compre-
hensive research on time domain features. This research
identifies the most distinguishing feature as the approximate
entropy in channel Cz (channel 11) with a Davis-Bouldin
value of 5.22.
In order to evaluate the effectiveness of the time domain
discriminating features; including approximate entropy,
wavelet entropy, per-mutational entropy, Katz fractal di-
mension, Petrosian fractal dimension, and box-counting
fractal dimension; as well as the power spectrum density

Table 4. Description of Fig. 5 labels.

Label Description

lower2 healthy Second lower alpha subband of healthy people
lower2 heroin addict Second lower alpha subband of heroin addicted subject
lower1 healthy First lower alpha subband of healthy people
lower1 heroin addict First lower alpha subband of heroin addicted subject
upper healthy Upper alpha subband healthy subject
upper heroin addicted Upper alpha subband of heroin addicted subject
smr healthy Sensory motor rhythm of healthy subject
smr heroin addicted Sensory motor rhythm of heroin addicted subject
delta healthy Delta subband of healthy subject
delta heroin addicted delta subband of heroin addicted subject
Teta healthy Theta subband of healthy subject
teta heroin addicted Theta subband of heroin addicted subject
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Figure 6. Comparison of Davis-Bouldin index values across all channels
for approximate entropy feature.

feature, another experiment has been designed.
In this test, the distinguishing features from the respective
channels are classified using a widely used classifier in
the field of pattern recognition known as the Support Vec-
tor Machine (SVM). The extracted features from different
channels are input into the SVM classification model. The
classification accuracy is then calculated.
Equation (21) computes the accuracy, while equation (22)
displays the accuracy value:

Precision =
T P

T P+FP
×100 (21)

Accuracy =
T N +T P

T N +T P+FN +FP
×100 (22)

where, T P is true positive, T N is true negative, FP is false
positive and FN is false negative. Table 5 shows the ac-
curacy and accuracy of classification with support vector
machine in different channels and according to different
features. 70% of the data in the database is used for training
and 30% for testing. Table 5 shows the result of classifica-
tion in all channels for time domain features. The features
extracted in the channels in the database are classified by
the support vector machine classifier. As can be seen from
the results obtained in Table 5, the support vector machine
classifier has the best result in detecting and classifying
the addicted person from the healthy person in the approxi-
mate entropy feature in channel 11, which is related to the

Figure 7. Comparison of Davis-Bouldin index values across all channels
for alpha band power spectrum.

time domain feature. This feature was determined by Davis
Boldin criterion as the best discriminating feature. The
classification results have also confirmed this issue. The
characteristic of the frequency power spectrum of different
subbands in the channels in the database is extracted and
categorized by the support vector machine. Table 6 shows
the results obtained in this classification. The results of
this table show that the upper alpha subband in channel
15 has the highest accuracy and precision in distinguishing
addicted maples from healthy ones. By comparing Table 5
and Table 6, it can be concluded that the features of the
frequency domain, such as the power spectrum calculated
from different subbands, are more effective in distinguish-
ing healthy people from addicts compared to time domain
features. Also, the results obtained in Table 6 are consistent
with the results obtained in [44] regarding the superiority of
the results of classifying and distinguishing addicted people
from healthy people in channel 15 or area (O1). In this
research, abnormal activities in the occipital, right parietal,
temporal, and frontal lobes of drug addicts compared to
healthy individuals have been proven. For two differenti-
ating features in time and frequency domains, confusion
matrices were reported. Fig. 8 shows the confusion matrix
for the approximate entropy feature in channel 11. Fig. 9
shows the confusion matrix for the characteristic of the
frequency power spectrum in the upper alpha subband in

Table 5. Classification result in all channels for time domain features.

Channel
number

Approximate
entropy

Wavelet
entropy

Permutation
entropy

Katz fractal
dimension

Petrosian fractal
dimension

Box-counting
fractal dimension

Precision Accuracy Precision Accuracy Precision Accuracy Precision Accuracy Precision Accuracy Precision Accuracy

11 91.55 91.15 87.02 88.28 86.96 87.11 85.25 85.45 80.00 81.12 75.90 75.50
7 89.43 90.52 86.89 88.14 85.88 85.23 83.14 83.02 79.23 80.14 75.02 75.30
8 88.51 90.00 85.19 87.00 85.28 84.85 84.25 84.25 78.25 79.45 74.14 74.79
5 88.32 88.76 84.53 83.89 82.18 83.90 82.72 82.90 78.14 79.02 73.50 73.97
3 87.50 88.37 83.10 83.13 82.89 82.87 80.58 81.56 76.25 78.25 73.14 72.33
4 85.23 88.50 81.33 82.11 82.52 81.90 78.28 79.38 75.78 77.18 72.26 82.89
16 84.42 88.70 80.14 80.19 80.22 80.14 77.79 78.85 74.99 76.10 71.25 72.15
6 84.00 85.10 79.79 80.08 80.00 79.50 76.97 77.08 74.23 75.15 71.01 71.28
2 83.17 85.60 78.88 79.55 78.05 78.45 75.14 75.79 75.26 74.28 70.89 71.02
13 82.99 84.10 77.25 78.15 77.14 78.02 75.50 75.97 75.00 74.18 69.11 71.01
17 82.33 84.15 77.01 77.28 76.20 76.25 73.14 74.33 74.23 74.15 68.01 70.28
12 81.26 83.28 75.89 76.32 75.84 76.18 71.26 72.89 73.26 73.28 67.89 79.32
14 81.00 82.18 74.11 75.01 74.36 74.89 70.19 71.33 73.00 73.18 67.11 69.01
15 80.15 81.17 74.37 74.28 74.80 74.09 70.11 70.18 72.52 73.90 66.26 68.39
9 79.79 81.17 75.02 73.00 73.23 73.36 69.90 70.72 71.22 72.14 65.79 68.75
10 79.74 80.32 71.14 72.05 72.12 73.15 68.88 69.59 70.84 71.50 64.97 66.08
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Table 6. Classification result in all channels for frequency spectrum features.

Channel
number

Upper alpha
band

First lower
alpha band

Second lower
alpha band

Sensory motor
rhythm

Theta
subband

Delta
subband

Precision Accuracy Precision Accuracy Precision Accuracy Precision Accuracy Precision Accuracy Precision Accuracy

15 92.95 92.18 91.02 91.77 89.96 89.19 88.25 88.45 89.59 86.12 84.90 85.28
14 92.43 91.58 90.89 90.99 89.88 89.89 88.14 87.55 85.23 86.06 83.02 83.34
12 91.51 91.09 90.19 91.39 88.29 89.85 87.25 87.34 84.25 85.45 82.14 82.79
9 91.32 91.00 89.53 90.89 87.17 88.87 86.72 86.90 83.14 84.02 81.50 81.72
6 90.54 90.37 89.10 89.13 87.01 88.00 85.58 86.56 82.25 82.35 80.14 81.33
10 90.23 90.25 88.33 88.11 86.52 87.90 85.28 85.38 80.54 81.25 79.26 80.26
13 89.42 90.70 88.14 88.00 86.22 87.17 84.79 84.54 79.99 80.01 78.45 79.15
17 88.00 89.10 87.87 87.28 85.84 86.50 83.97 84.08 79.23 79.15 77.78 79.08
2 84.17 86.40 83.88 83.55 85.25 86.45 83.17 83.79 77.26 78.28 77.01 78.23
7 82.99 83.10 82.02 83.15 80.14 84.02 81.50 82.09 76.03 77.89 75.85 76.85
3 81.23 82.15 80.01 81.28 79.25 80.25 80.14 82.33 75.23 76.15 74.51 75.28
16 80.26 81.28 79.89 80.32 78.87 80.18 79.26 81.89 74.26 74.29 73.89 74.32
11 80.08 81.18 78.11 79.01 78.36 79.09 78.19 80.33 72.07 73.18 73.11 73.01
4 79.19 80.17 77.47 78.28 76.80 77.79 77.11 79.18 71.52 71.90 72.28 72.38
8 78.78 79.17 77.05 77.08 76.22 76.36 76.90 78.82 70.22 71.05 70.15 70.99
5 78.74 78.32 76.12 77.00 75.12 75.15 75.87 77.58 69.84 70.11 69.00 70.08

channel 15. For other features, the classification accuracy
value is presented in the Tables 5 and 6.

5.1 Comparison with other research

In this section, several studies are reviewed and compared
with the findings of this research. The examination of the
consistency of electroencephalogram (EEG) signal power
in 18 heroin addicts and 12 healthy individuals is presented
in [47]. The results indicate that heroin addicts exhibit in-
creased beta 2 relative power and gamma coherence in the
left hemisphere compared to the control group.
In [48], the focus is on the time dynamics and frequency
characteristics of the EEG signal in individuals with addic-
tion. This study investigates the amplitude of low-frequency
fluctuations (ALFF) in addicts compared to healthy individ-
uals. The findings reveal a significant positive correlation
between increased ALFF and the dosage of methadone used.
Consequently, it can be inferred that a reduction in ALFF is
associated with heroin use.
In [49], the relative power and central frequency of the al-
pha and beta sub-bands have been investigated in addicted
people and healthy people. The results of this research show

Figure 8. Confusion matrix for the approximate entropy feature in channel
11.

a significant difference between the desired characteristics.
The analysis of the electroencephalogram signal shows that
in more than 70% of cases, a relatively low amplitude of
alpha subband activity, an increase in beta activity and a
significant amount of low-amplitude waves in the central
regions of the brain are observed in this feature. to be in
[50], the effects of heroin on the brain have been evaluated
by studying the relationships between the power spectrum
and average frequency of the electroencephalogram and the
duration of heroin use.
The research results show that the frequency changes in the
alpha 2 subband are more prominent in the frontal and cen-
tral areas and are related to the duration of heroin consump-
tion. The decrease in the average frequency of the alpha one
subband was more prominent in the central, temporal and
axial regions, which was mainly observed in heroin addicts
who used a high dose of the drug. The power spectrum of
brain electrical activity in sick people corresponds to the du-
ration of addiction withdrawal. The results show that high
consumption of heroin causes changes in the frequency of
neural oscillations. Table 7 summarizes the comparison of
the effect of electroencephalogram signal changes in the

Figure 9. Confusion matrix for the characteristic of the frequency power
spectrum in the upper alpha subband in channel 15.
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Table 7. Differences between healthy people and addicted people in the electroencephalogram signal.

Ref. Method Results Weak point

[47]

Examining the consistency of
brain signal power spectrum
density in determining the
difference between the two hemispheres

Examining all subbands to determine
hemispheric differences between
healthy and addicted subjects

Only the signal power uniformity
feature is checked
(one feature is not enough)

[48]
Dynamics and frequency
characteristics of
electroencephalogram signal

Investigating the differences in
time and frequency domain
characteristics in all parts of
the head and brain

Failure to determine the amount
of methadone used for treatment

[49]
Investigating relative power
and center frequency of alpha
and beta subband

Investigating the effect of drug
use in addicted and healthy people

Examining the differences in
healthy and addicted people has
been done only in two sub-bands.

[50]

Investigating the relationship between
the power spectrum and average
frequency of the electroencephalogram
and the duration of heroin use

Simultaneous examination of
two features in the frequency domain

Only one attribute is considered
for correlation analysis.

Proposed method
Determining the distinguishing
feature in the time and frequency domain

Examining drug disorders in treatment

Failure to determine the relationship
between brain regions in the examined
frequency and non-frequency
characteristics

conducted studies. Based on the above results, although sev-
eral features have been considered for linear and non-linear
frequency features, however, the main challenge of Fourier
transform, i.e. inefficiency for dynamic signals, is raised.
To overcome this challenge, in these studies, EEG signals
are divided into short and overlapping intervals, but it seems
that non-frequency characteristics can be investigated more
effectively. The results obtained in this present research are
compared with [51] in order to determine the distinguishing
feature, in which the support vector machine classification
was used to identify the addicted person from the healthy
person. The comparison results are shown in Table 8. Based
on this table, the superiority of the distinguishing features of
this research can be seen compared to the compared method
due to confirmation by the Davis-Bouldin test.
This paper tackles challenges related to demonstrating the
effectiveness of time-domain features in representing in-
formation, as well as addressing the non-stationarity and
complexity of brain signals. To achieve this, both time-
domain and frequency-domain features were extracted, with
the most distinctive features identified using the Davies-
Bouldin criterion. Several experiments were designed to
validate the resolution of these challenges and gaps. The
results indicate that these challenges have indeed been ad-
dressed. Additionally, features derived from common do-
main transforms, such as the wavelet transform, which pro-
vides characteristics from both time and frequency domains,
have proven beneficial. Employing modeling-based meth-
ods could further substantiate the findings presented in this
study, potentially reinforcing the conclusions drawn.

6. Conclusion
In this paper, we have meticulously extracted a compre-
hensive set of both frequency and time domain features
from various sub-bands and electrodes to delineate the
distinguishing characteristics in the EEG signals of
healthy individuals and heroin addicts. Our findings
reveal pronounced disparities in several of these features,
underscoring the potential of EEG analysis in identifying
the neurological impacts of heroin addiction. Notably, in
the upper alpha band, there was a marked reduction in the
power spectrum observed in channel O1 of the addicts,
signifying potential alterations in brain activity associated
with addiction. Furthermore, the approximate entropy
in channel Cz exhibited a significant increase among
the addicts, indicating a higher level of complexity and
irregularity in their EEG. These two features-diminished
power spectrum in the upper alpha band at O1 and elevated
approximate entropy at Cz emerged as crucial indicators
that effectively differentiate between the neural signatures
of healthy individuals and heroin addicts. The implications
of these findings are profound, offering new avenues for
the application of EEG in the diagnosis and understanding
of heroin addiction. By leveraging these specific EEG
features, we can enhance our ability to identify and monitor
the neurological effects of heroin use, thereby contributing
to more targeted and effective interventions. This study not
only advances our understanding of the brain’s response
to heroin addiction but also underscores the potential of
EEG as a powerful tool in the realm of neuropsychological
assessment and addiction research.

Table 8. Comparison of accuracy and accuracy of classification.

Method Precision Accuracy

[51] 73.00 81.00
Time domain feature (approximate entropy in channel 11) 91.50 91.81
Frequency feature (upper alpha band in channell15) 92.95 92.40
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