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Abstract:
With the development of quantum computing technology, the current cryptographic systems face significant
threats. Quantum algorithms, such as Shor’s algorithm, have demonstrated the capability to efficiently solve
mathematical problems upon which traditional cryptographic protocols rely for security. This emphasizes the
critical need for Post-Quantum Cryptography (PQC) as a preemptive measure against the potential vulnerabil-
ities posed by quantum computers. There are diverse signature schemes available, each exhibiting unique
performance characteristics. The selection of an optimal scheme tailored to specific applications is necessary
for ensuring both efficiency and security. To address this, a novel approach based on Evaluating Distance
from Average Solution (EDAS) can be employed to rank the PQC algorithms based on the compromise score
computed within the algorithm. In the pursuit of evaluating various schemes, signatures are generated using
SPHINCS+-Haraka-128s-simple, SPHINCS+-Haraka-256f-simple, Supersingular Isogeny Key Encapsula-
tion (SIKE), Falcon-1024 and Dilithium5. These schemes represent a spectrum of post quantum cryptographic
techniques, each with its strengths and weaknesses. The performance metrics are systematically measured to
provide a quantitative basis for comparison. Key aspects, including the efficiency of generating keys, signing
processes, and verification procedures, are scrutinized to capture the schemes’ overall capabilities. The EDAS
is then calculated for each metric using the weight computed by Eigenvector or Real Time Aggregation
strategies, offering a nuanced perspective by accounting for the distance of each scheme’s performance from
the average solution. By considering these findings, stakeholders can make informed decisions about which
scheme aligns best with their particular security and efficiency requirements, thus contributing to a more
robust and tailored digital signature implementation.

Keywords: Digital signature schemes; Eigenvector; Evaluation based on distance from average solution; Post-quantum cryptography;
Ranking; Real-time aggregation

1. Introduction

With rapidly developing quantum computing technology,
the safety of ordinary cryptographic systems is threatened.
Quantum algorithms, such as Shor’s algorithm, have shown
extraordinary efficiency in solving mathematical problems
underlying classical cryptographic protocols. Thus, the ur-
gency of adopting Post-Quantum Cryptography (PQC) as a
preemptive defense against potential threats from quantum
computers is emphasized. Among various cryptographic
techniques, it is essential to choose an appropriate signature
scheme according to specific applications to ensure both effi-
ciency and security. Cryptographic weaknesses enhance the

decision-making process by systematically evaluating and
ranking alternative post-quantum cryptographic algorithms
based on criteria such as security strength, performance,
and scalability. This capability positions EDAS as a valu-
able tool in identifying and selecting robust cryptographic
solutions that are resistant to quantum threats.
This paper presents a new approach based on Evaluating
Distance from Average Solution (EDAS) to rank the PQC
algorithms using the score obtained. The algorithms consid-
ered include SPHINCS+-Haraka-256f-simple, SPHINCS+-
Haraka-128s-simple, Supersingular Isogeny Key Encapsula-
tion (SIKE-p751) based DSA, Falcon-1024 and Dilithium5
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among others which are evaluated through EDAS. Each
of these schemes is representative of post-quantum cryp-
tography methods with different strengths and weaknesses.
The ranking uses a quantitative approach that involves the
systematic measurement of performance metrics including
key generation efficiency, signing processes and verification
procedures for comparison purposes. Eventually, the metric
of Distance from Average Solution (DAS) is computed for
each metric, which gives insight into how well schemes
perform relative to the average.
As a part of the EDAS algorithm, weights are computed
for each parameter based on which these algorithms are
ranked. Two approaches are implemented for this. The
eigenvector approach involves calculating the weights based
on the main eigenvector of the pairwise comparison matrix.
In this way, the algorithm will identify major factors that
contribute most to its overall performance among all other
algorithms. The technique uses eigenvalues and correspond-
ing eigenvectors to assign weighting to each parameter in
an evaluation process. A higher eigenvector value indicates
a stronger influence on ranking of signature schemes, so
such parameters are assigned greater weights. However,
real-time aggregation strategy takes into consideration dy-
namic computations for weightings. With this method, it
adjusts weights using real time performance data thus in-
corporating the current information in the valuation process.
Continuously updating/re-adjusting weights as per changing
conditions or priorities guarantees that assessment remains
relevant and up to date with latest performance dynamics.
This flexibility accommodates changes and updates making
evaluation more adaptable. By employing either one of
these strategies i.e., eigenvector or real-time aggregation; a
comprehensive and flexible approach towards weight com-
putation is achieved by the EDAS algorithm.
This approach enables a comprehensive ranking of signature
schemes that matches varying application-specific priorities.
It further outlines practical implications associated with
EDAS in nine diverse application areas such as agriculture,
business management, construction management, energy
and natural resources, healthcare management, Information
Technology (IT), manufacturing and supply chain manage-
ment and transportation management.
With that integration, stakeholders can make informed de-
cisions on signing up for the systems that best meet their
security efficiency needs. Therefore this paper provides
inputs to the development of a secure and efficient imple-
mentation framework of digital signatures customized for
the quantum computing era.
The objective of this research is to enhance the evaluation
and selection process of cryptographic algorithms, partic-
ularly in the context of post-quantum digital signatures.
Traditional comparison methods often lack optimization
and face several limitations, reducing their effectiveness.
To address this, the research aims to introduce Evaluation
based on Distance from Average Solution as a ranking al-
gorithm to provide a systematic and objective approach for
evaluating the performance of the cryptographic algorithms.
Within EDAS, the weights are computed using either the
eigenvector strategy or real-time aggregation strategy which

quantifies the importance of each parameter used for com-
paring the algorithms, thereby enhancing the reliability of
the cryptographic algorithm evaluations.

2. Literature survey
Evaluation based on Distance from Average Solution has
seen increased usage in multiple Multi-Criteria Decision-
Making (MCDM) applications. EDAS is a powerful tool
that assesses alternatives based on their distance from an
average solution, allowing for more informed decision-
making. Known for its robustness against weight variations,
EDAS is applicable across various domains.

A. Literature review on EDAS applications in different
fields
Ali Ebadi Torkayesh et al. conducted a comprehensive liter-
ature review on EDAS as an Multi-Criteria Decision Mak-
ing (MCDM) technique, highlighting its application across
real-world sectors such as agriculture, business, construc-
tion, IT, manufacturing, supply chain, and transportation [1].
Phuong Thanh Phan et al. suggested the utility of EDAS in
scenarios with increased evaluation parameters, specifically
in selecting construction managers within civil engineer-
ing [2]. In multi-criteria inventory classification (MCIC),
Mehdi Keshavarz-Ghorabaee et al. implemented EDAS to
evaluate alternatives using positive and negative distances
[3].

B. Sustainable and industrial applications of EDAS
Mohamed Abdel-Basset et al. applied EDAS to the sustain-
able selection of offshore wind power plant locations, em-
phasizing its stability across various weights, transparency,
and dependability [4]. In the defense industry, Güneri et al.
demonstrated the practical relevance of EDAS by evaluating
supplier companies [5]. Shankar Chakraborty et al. com-
bined EDAS with the TOPSIS method to enhance MCDM
processes [6].

C. Advances in EDAS: integration with linguistic num-
bers and MCDM techniques
Siqi Zhang et al. examined Picture 2-Tuple Linguistic Num-
bers (P2TLNs) and their integration with EDAS, allowing
for multi-criteria group decision-making while highlighting
the advantages of this novel approach over traditional EDAS
[7]. Torkayesh et al. reviewed EDAS in multiple fields and
explored its integration with machine learning and advanced
decision-making models, further extending its real-world
applications [8]. Chen et al. introduced improvements to
EDAS that incorporate aggressive and conservative esti-
mates, enhancing complex C-IF information measurement
and enabling robust ranking in MCDA problems, such as
post-quantum cryptographic algorithms [9].

D. Recent innovations in EDAS applications and en-
hancements
EDAS has been applied across various domains with evolv-
ing enhancements. For instance, Büyüktaş et al. (2022)
used EDAS for green supplier selection, showcasing its ef-
fectiveness in sustainability assessments and its ability to

2345-3796[https://doi.org/10.57647/j.mjee.2025.1901.16]

https://doi.org/10.57647/j.mjee.2025.1901.16


Kumarasamy et al. MJEE19 (2025) -192516 3/9

accommodate various criteria for aligning suppliers with
organizational sustainability goals [10]. Jiang et al. (2023)
introduced fuzzy decision-making with EDAS, creating a re-
liable framework for uncertain environments [11]. In smart
city planning, Zhang et al. (2024) demonstrated EDAS’s
adaptability to urban challenges, supporting multi-criteria
assessments for urban development projects [12].

E. Application of EDAS for post-quantum cryptographic
algorithm selection
This paper utilizes EDAS to rank post-quantum cryptog-
raphy digital signature algorithms, including SPHINCS+-
Haraka-128s-simple, SPHINCS+-Haraka-256f-simple,
SIKE-p751, Dilithium5, and Falcon-1024. Daniel J.
Bernstein et al. underscore the importance of PQC in the
quantum computing era, aiming for secure yet flexible
cryptographic solutions [13]. Shagun Sharma et al. provide
a technical overview of PQC algorithms, examining
methods for securing classical cryptographic algorithms
[14].

F. Performance evaluation of PQC algorithms
Kanad Basu et al. proposed a High-Level Synthesis (HLS)
hardware design approach to assess the hardware perfor-
mance of PQC algorithms [15, 16]. Daniel J. Bernstein et al.
also introduced a Sphincs+ signature framework utilizing a
FORS scheme and customizable hash functions for digital
signatures, simplifying security analysis [17]. Deepraj Soni
et al. reviewed variants of Sphincs+ and Falcon algorithms,
focusing on trade-offs in power, area, speed, and security
parameters for key and signature generation [18–20].

G. Comparisons and trade-offs in PQC algorithms
Léo Ducas et al. proposed the Dilithium lattice-based signa-
ture algorithm, which features a reduced public key size for
faster processing speeds [21]. James Howe et al. analyzed
the Dilithium and Falcon algorithms on the ARM Cortex
M7, providing insights into performance on constrained
devices [22, 23]. Tako Boris Fouotsa et al. introduced a
countermeasure for SIKE post-quantum cryptography that
avoids traditional key disclosure requirements [24]. Fábio
Borges et al. compared PQC security, focusing on key
agreement protocols that address challenges like the Dis-
crete Logarithm Problem and Integer Factorization Problem
[25]. Manish Kumar et al. compared NIST-selected PQC
algorithms by evaluating metrics like NIST level, key sizes,
and performance [10, 26]. Teik Guan Tan et al. provided
a feasibility matrix that matches PQC algorithms to appli-
cation requirements, facilitating the replacement of classi-
cal digital signing algorithms with PQC alternatives [11].
Manohar Raavi et al. evaluated NIST finalist PQC signature
schemes, analyzing implementation costs, communication
overheads, and processing times [12]. Marin Vidaković et
al. offered insights into PQC algorithm integration, com-
paring key metrics like security level, speed, and efficiency
within constrained environments [27].Conventional post-
quantum digital signature comparisons exhibit several short-
comings. Firstly, the absence of standardized algorithms
for ranking post-quantum cryptography schemes across di-
verse domains restricts informed decision-making in crypto-

graphic solution selection. Secondly, the lack of established
methodologies for computing weights assigned to differ-
ent parameters undermines the reliability and objectivity of
cryptographic algorithm assessments. Lastly, insufficient
clarity in the reasoning for weight assignment within exist-
ing EDAS-based ranking methodologies leads to ambiguity
in cryptographic algorithm evaluations.

3. Proposed methodology
In recent years, decision-making processes have increas-
ingly recognized the significance of uncertainty and im-
precision in evaluating alternatives across various domains.
The Evaluation based on Distance from Average Solution
(EDAS), introduced in 2015, is a widely recognized method
that is commonly used in various decision-making situ-
ations. It provides a list of alternatives ranked by their
cumulative distance scores. Due to its flexibility and ef-
fectiveness, EDAS has become one of the most reliable
solutions for complex decision-making problems. Its wide
acceptance proves it is a choice for many decision-makers.
Originally developed as a ranking tool to prioritize among
alternatives in complex landscapes of multiple criteria de-
cisions, EDAS had remarkable features through its normal-
ization process. In contrast to traditional methods like Tech-
nique for Order of Preference by Similarity to Ideal Solution
(TOPSIS) and VIKOR, which stands for Viekriterijumsko
Kompromisno Rangiranje, a Serbian term for “multi-criteria
optimization and compromise solution”, which use ideal
and nonideal solutions, EDAS differs by utilizing normal-
ization techniques built on the concept of average solution.
This shift comes from the understanding that realistic deci-
sion contexts often require subtlety; hence moving closer or
farther from the ideal setting does not guarantee the right
alternative.
Within EDAS, two different weight computation strategies
are employed to quantify the priority of parameters, which
in turn influence the ranking of algorithms. These strate-
gies, namely the eigenvector strategy and the real-time ag-
gregation strategy, offer distinct approaches to assessing
the importance of parameters. The eigenvector strategy
utilizes mathematical principles to determine weights, con-
sidering the importance of each parameter. In contrast, the
real-time aggregation strategy allows for dynamic adjust-
ments of weights based on the latest data values, provid-
ing adaptability to changing circumstances. By employing
these complementary strategies within the EDAS frame-
work, decision-makers can obtain a comprehensive and
nuanced understanding of algorithm performance, enabling
informed decision-making across various domains.
The Evaluation based on Distance from Average Solution
method heavily relies on its weighting techniques to assess
and rank alternatives effectively. However, previous meth-
ods like Opinion Weight Criteria Method (OWCM) and the
Full Consistency Method (FUCOM), which can be utilized
within the EDAS framework, have inherent drawbacks that
can affect decision-making outcomes. OWCM, while bene-
ficial for incorporating expert opinions, often suffers from
subjectivity, leading to potential inconsistencies in rankings
when different experts provide conflicting assessments. Fur-
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thermore, its dependence on qualitative judgments can limit
its effectiveness in scenarios where objective data is crucial.
Similarly, FUCOM aims to ensure consistency through
structured pairwise comparisons, yet it remains labor-
intensive and may introduce human error as the complexity
of the decision matrix increases. The necessity for multiple
evaluations can become cumbersome, particularly in large-
scale assessments.
Both methods also lack the adaptability needed in dynamic
environments, where criteria priorities may shift rapidly,
as they do not facilitate automatic recalibration based on
real-time data inputs. These limitations highlight the ne-
cessity for an enhanced weighting approach within EDAS
that minimizes subjectivity and maximizes consistency and
adaptability in multi-criteria decision-making.

3.1 Eigenvector method
The eigenvector method involves assessing the importance
or priority of the parameters by constructing a pairwise com-
parison matrix based on the given ranking. The obtained
matrix is used to compute the respective eigenvector and
eigenvalues using which the weights are computed by nor-
malizing the principal eigenvector i.e., the eigenvector with
the maximum eigenvalue. This approach provides a system-
atic method to quantify the importance of the parameters.

3.1.1 Matrix generation function
Step 1: Input processing: The function utilizes the “rank”
parameter which carries a ranked list of factors.
Step 2: Matrix initialization: To store importance weights
for influential factors, initially, a matrix filled up with zeros
by the function.
Step 3: Diagonal Initialization: Each factor will have equal
priority to itself and hence all diagonal elements are set as
1.
Step 4: Importance Assignment: Starting from the first
rank, an increase in value is assigned to each element in
the matrix. The higher ranks correspond to more important
values.
Step 5: Incremental Importance: This involves moving
through the rank list from lowest to highest and increasing
the importance or priority values along the way up so that
there is a gradual increase among them.
Step 6: Dynamic Scaling: In addition, to maintain con-
sistency in the matrix and ensure relevant factor weights,
this function dynamically scales the importance values in
proportion to each other.
Output: Finally, when complete, this generates a matrix
that reflects how important every factor is according to the
ranking given. This matrix is referred to as the priority
matrix.
Following the creation of the priority matrix, the algorithm
proceeds to calculate the factors’ weights using the Eigen-
vector strategy.

3.1.2 Calculating the parameter weights
Step 1: Eigenvector Computation: The algorithm applies
NumPy linear algebra functions to determine the eigenval-
ues and eigenvectors of the priority matrix. The biggest
eigenvalue’s eigenvector is denoted as vi. It will represent

the principal vector of determining all factor weights.

Avi = λ j maxvi (1)

where A is the pairwise comparison matrix, v is the eigen-
vector, λ is the eigenvalue, i represents the eigenvectors and
j is the eigenvalue in ith eigenvector.
Step 2: Weight Calculation: After computing eigenvalues
and eigenvectors, it moves on to calculate the weightings
of factors by normalizing the primary eigenvector. This
step standardizes all the weights so that they can sum up
to 1, which allows for effective comparisons among these
factors.

wi =
vi

∑
n
j=1 v j

(2)

where wi is the weight assigned to factor i, vi is the ith

eigenvector.
This algorithm uses a rank-based way of identifying factors
with the parameters ranked from least important to most
important depending on assigned scores. These scores are
then transformed into importance or priority levels within
the priority matrix.
The model’s versatility allows researchers to apply it across
multiple domains where factorization plays a vital role in
determining respective weights. Typically, programming
code is utilized to simulate real-world problems, enabling
the testing of various scenarios to gain deeper insights into
the effects of different factors on the outcome. This iterative
process aids in developing a clearer understanding of how
various parameters influence the final results.

3.2 Weight calculation by real-time aggregation
Step 1: Reciprocal Calculation and Summation: Initially,
the function called calculate weights divides each element
of the input array by one (calculates the reciprocal). These
reciprocals are then added to obtain the total reciprocal
sum.
The input array consists of real-time parametric values
obtained from [28].
Input array = [ [98.8, 60.57, 56.52, 500, 434, 378],

[320, 10520, 29132, 300, 2528, 1312],

[3305.33, 130.95, 1841.3, 500, 64, 32],

[1635, 38.42, 1592.1, 500, 128, 64],

[40.23, 1446.52, 9782.67, 300, 1281, 897] ]
Step 2: Standardization: After getting the sum of the recip-
rocal values, normalize each reciprocal by dividing with the
total sum. This is done to ensure that the weights sum up to
1 which facilitates their straightforward interpretation and
comparison.

W (ei) =
1/ei

∑
n
j=1 1/ei

(3)

where ei is the ith parameter’s real-time value.
Once the weight calculation function is established, it is ap-
plied to each algorithm’s performance metrics or parameters,
generating weights for each parameter across all algorithms.
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This step allowed us to quantitatively assess the relative
importance of each parameter in the context of different
cryptographic algorithms. By aggregating the weights for
each parameter, we obtained insights into their significance
and impact on algorithm selection.

3.2.1 Evaluation based on distance from average solu-
tion (EDAS) ranking

The Eigenvector and the Real-time Aggregation strategy
quantify the importance of the parameters for comparing the
PQC algorithms. These computed weights are incorporated
within the EDAS algorithm and ranks are generated based
on the compromise score.
EDAS uses two measures, Positive Distance from Average
Value (PDA) and Negative Distance from Average Value
(NDA), to compare different choices and establish their
relative priority levels. These measures are crucial for
generating final orderings.
Step 1: Create the initial decision matrix based on
real-world data. For the real-time values, we utilize
real-time values obtained from [28].
Input array = [ [98.8, 60.57, 56.52, 500, 434, 378]

[320, 10520, 29132, 300, 2528, 1312]

[3305.33, 130.95, 1841.3, 500, 64, 32]

[1635, 38.42, 1592.1, 500, 128, 64]

[40.23, 1446.52, 9782.67, 300, 1281,897] ]
This matrix outlines the alternatives or the algorithms in-
cluding SIKE-p751 based DSA, Falcon-1024, Dilithium5,
SPHINCS+-Haraka-128s-simple and SPHINCS+-Haraka-
256f-simple (indexed as m = 1, 2, · · · , i) across various
criteria or parameters including NIST security level, Com-
putation time, signing time, verifying time, public key size
and private key size (indexed as n where n = 1, 2, · · · , j).
Step 2: Determine the average solution by considering all
the parameters. Calculate the average solution for each
parameter.

Average of parameter (AVj) =
∑

n
i=1 xi j

n
(4)

where,
i = algorithm
j = parameter
xi j = real-time time values of ith algorithm and jth parame-
ter
Step 3: Calculate two critical measures of EDAS, namely
PDA (Positive Distance from Average) and NDA (Negative
Distance from Average) based on the nature of conflicting
parameters. For the beneficial parameter NIST security
level, compute PDA and NDA values using the designated
equations, while for non-beneficial parameters which in-
clude signing time, verification time, public key size, private
key size and computation time, utilize separate equations as

shown below.

PDA Bi j =
max(0,xi j −AVj)

AVj
(5)

NDA Bi j =
max(0,AVj − xi j)

AVj

PDA NBi j =
max(0,AVj − xi j)

AVj

NDA NBi j =
max(0,xi j −AVj)

AVj

where,
PDA Bi j is the positive distance from the average solution
for the beneficial parameter, NDA Bi j is the negative dis-
tance from the average solution for the beneficial parameter,
PDA NBi j is the positive distance from the average solution
for non-beneficial parameters, NDA NBi j is the negative
distance from the average solution for non-beneficial param-
eters, and,
i = algorithm
j = parameter
xi j = real-time time values of ith algorithm and jth parame-
ter
AVj = Average of parameter j
Step 4: Utilize weight coefficients assigned to each pa-
rameter obtained from the real-time aggregation method
or eigenvector method. These coefficients are applied to
determine the weighted sum of PDA and NDA values.

SPi =
n

∑
j

w B jPDA Bi j +
n

∑
j

w NB jPDA NBi j (6)

SNi =
n

∑
j

w B jNDA Bi j +
n

∑
j

w NB jNDA NBi j

where SPi is the sum of the positive distance of the ith al-
gorithm, SNi is the sum of the negative distance of the ith

algorithm, w B j is the weight of the ith beneficial parameter,
w NB j is the weight of the jth non-beneficial parameter.
Step 5: Normalize the weighted sum values of PDA and
NDA using the specific normalization equation.

NSPi =
SPi

max(SPi)
NSNi = 1− SNi

max(SNi)
(7)

where NSPi is the normalized sum of the positive distance
of the ith algorithm, NSNi is the normalized sum of the
negative distance of the ith algorithm.
Step 6: Finally, ascertain the compromise score (ASi) for
each algorithm. Rank the algorithm based on their compro-
mise scores, with higher scores indicating algorithms that
are better suited for the given application.

ASi =
1
2
(NSPi +NSNi) (8)

Following the introduction of EDAS, numerous studies
aimed to strengthen its reliability and adaptability by in-
corporating various uncertainty sets to effectively address
complex real-world problems.
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4. Result analysis
The result analysis provides a comprehensive comparison
of PQC algorithms with their real-time values of NIST level,
Public and Private key sizes and Signing, Verification and
Computation time. Following the real-time values compari-
son, the weights computed using the eigenvector and real-
time aggregation strategy are analyzed through graphical
representation. This comparison highlights the variations in
weights assigned to different parameters by each strategy.
Furthermore, the compromise scores provided by the Evalu-
ation based on Distance from the Average Solution of the
PQC algorithms are compared based on their compromise
score to obtain which algorithm is most suitable for the
given application.

4.1 Comparative analysis of the post quantum cryptog-
raphy algorithms based on their real-time values

In figure 1, it’s evident that the PQC algorithms SPHINCS+-
Haraka-256f-simple, SIKE-p751, Falcon-1024, ml dsa 87
and Dilithium5 have the highest NIST level of 5.
Conversely, SPHINCS+Haraka-128s-simple, ml dsa 44,
ml dsa 65 exhibits a comparatively lower NIST level of 1,
2, 3 respectively indicating lower security measures.
From figure 2, it is inferred that SPHINCS+-Haraka-128s-
simple has the smallest public and private key sizes (32 and
64 bytes respectively), while Falcon-1024 and ml dsa 87
have the largest public key size (2592 bytes) and ml dsa 65
has the largest private key size (4896 bytes). SPHINCS+-
Haraka-128s-simple offers the most compact option, but
potentially with lower security. Conversely, Falcon-1024
and ml dsa 87 have large public keys and ml dsa 65’s large
private key translates to larger data transfers, storage needs,
and potentially slower processing, although they might pro-
vide stronger security.
In figure 3, it is observed that SPHINCS+-Haraka-128s-
simple appears to have the fastest signing time (around
6.88 milliseconds), followed by SPHINCS+-Haraka-256f-
simple (around 38.42 milliseconds) while Dilithum5 seems
to have the slowest signing time (around 5279.67 millisec-
onds). For the Verification time, ml dsa 44 seems to have
the fastest verification time (around 14 milliseconds), fol-
lowed by ml dsa 65 (around 23 milliseconds). Dilithum5
again seems to have the slowest verification time (around
10341 milliseconds). In the case of Computation time,
ml dsa 44 also has the fastest computation time (around

Figure 1. NIST level vs PQC algorithms.

Figure 2. Public and private key sizes vs PQC algorithms.

17 milliseconds), followed by ml dsa 65 (around 33 mil-
liseconds). Dilithuim5 again seems to have the slowest
computation time (around 10341.1 milliseconds). From
this, we can infer that Dilithium5 consistently takes the
most time, indicating that it is the most time-consuming
cryptographic algorithm.

4.2 Weight comparison using eigenvector and real-time
aggregation

In figure 4, the eigenvector strategy prioritizes ranking for
weight allocation, potentially resulting in significant dif-
ferences in algorithmic weights. This strategy typically
depends on predetermined criteria or past data for assigning
weights to parameters, often leading to marked divergences
among algorithms. Nonetheless, such methods might over-
look real-time fluctuations in performance metrics, intro-
ducing possible inaccuracies in weight distribution. Con-
versely, a real-time aggregation strategy dynamically adjusts
weights based on current values, offering finer control and
adaptability in dynamic contexts. By integrating the latest
performance data, this approach accommodates nuanced
variations in algorithmic weights, reflecting their current
performance status.

4.3 Rank comparison using eigenvector and real-time
aggregation with EDAS

Table 2 represents the compromise score and the rank for
each of the PQC algorithms by Eigenvector strategy. SIKE-
p751 has the highest ranking making it most suitable for the
specific application.
Table 3 represents the compromise score and the rank for
each of the PQC algorithms by Real-time aggregation strat-

Figure 3. Signing time, verification time and computation time vs PQC
algorithms.
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Figure 4. Eigenvector vs real-time aggregation for each parameter.

egy. SIKE-p751 has the highest ranking making it most
suitable for the specific application.

4.4 Rank comparison with OCPM and FUCOM meth-
ods

Table 4 clearly demonstrates that the Eigenvector method
is the superior approach for ranking post-quantum crypto-
graphic algorithms, as evidenced by its consistent perfor-
mance across various metrics. With SIKE-p751 achieving
the highest score of 0.4823 and securing the top rank in all
three methods, it highlights the method’s effectiveness in
integrating multiple criteria such as security and efficiency
into a coherent evaluation framework. The second position
of SPHINCS+-Haraka-256f-simple further illustrates the
Eigenvector method’s ability to balance performance and
security parameters effectively. In contrast, the OWCM and
FUCOM methods exhibit more variability in their rankings,
particularly with SPHINCS+-Haraka-128s-simple, which
is ranked lower in the Eigenvector method due to its effi-
ciency shortcomings. This inconsistency suggests that while
OWCM focuses on security, and FUCOM emphasizes effi-
ciency, they lack the comprehensive adaptability offered by
the Eigenvector method. Overall, the results underscore the
Eigenvector method’s robustness and reliability, making it
the preferred choice for complex decision-making scenarios

in post-quantum cryptography.

Remarks
Based on the analysis presented in figure 5, it is evident that
the eigenvector weight computation strategy emerges as
the preferred method over the real-time aggregation weight
computation strategy, despite its increased time complex-
ity. This preference arises from the eigenvector strategy’s
capacity to generate compromise scores with a wider distri-
bution, facilitating reliable ranking of algorithms according
to application-specific priorities. While the real-time aggre-
gation strategy enables the manipulation of weights based
on the latest data, the eigenvector strategy offers more ac-
curate results by capturing the inherent importance of each
parameter. By leveraging mathematical principles to de-
termine weights, the eigenvector strategy offers a robust
and objective approach to decision-making in cryptographic
algorithm evaluation. Despite its computational complexity,
the eigenvector strategy’s ability to generate compromise
scores enables decision-makers to prioritize algorithms ef-
fectively, considering various application-specific consider-
ations.
In contrast, while the real-time aggregation strategy offers
the advantage of adaptability to dynamic data changes, its
effectiveness may be compromised by the lack of a clear
framework for determining parameter weights. Without a
systematic approach to weight computation, the real-time
aggregation strategy may lead to inconsistencies or biases
in the evaluation process, limiting its utility for precise al-
gorithm ranking. Thus, while both strategies have their
merits, the eigenvector strategy stands out as the preferred
choice for its ability to provide accurate and reliable results
in cryptographic algorithm evaluations.

5. Discussion

The proposed approach of using the Evaluating Dis-
tance from Average Solution (EDAS) method for
ranking post-quantum cryptography algorithms, such

Table 1. Calculated weights for each parameter by using the eigenvector method and real-time aggregation method.

Parameters Eigenvector Method Real-Time Aggregation Method
NIST Level 0.4284 0.9877
Signing Time 0.2523 0.0030
Verification Time 0.1530 0.0007
Private Key Size 0.0529 0.0026
Public Key Size 0.9256 0.0041
Computation Time 0.0241 0.0019

Table 2. EDAS based ranking of algorithms using eigenvector method.

Algorithms Eigenvector Method Rank Obtained
SPHINCS+-Haraka-256f-simple 0.4344 2
SPHINCS+-Haraka-128s-simple 0.0525 7
SIKE-p751 0.4969 1
Dilithium5 0.0827 5
Falcon-1024 0.1196 4
ml dsa 44 0.0545 6
ml dsa 65 0.0521 8
ml dsa 87 0.4160 3
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Table 3. EDAS based ranking of algorithms using Real-time Aggregation method.

Algorithms Real-time Aggregation Method Rank Obtained
SPHINCS+-Haraka-256f-simple 0.4986 2
SPHINCS+-Haraka-128s-simple 0.0007 6
SIKE-p751 0.5 1
Dilithium5 0.4654 5
Falcon-1024 0.4743 4
ml dsa 44 0.00035 7
ml dsa 65 0.00033 8
ml dsa 87 0.4901 3

as SPHINCS+-Haraka-128s-simple, SPHINCS+-Haraka-
256f-simple, SIKE-p751, Dilithium5, and Falcon-1024, of-
fers a systematic framework. When applying EDAS to
rank post-quantum cryptographic (PQC) algorithms, secu-
rity concerns like data integrity attacks and process manip-
ulation must be addressed. Tampering with input data or
ranking criteria may skew results, potentially leading to the
selection of weaker algorithms. Additionally, side-channel
attacks could expose sensitive information about the algo-
rithms. Securing the EDAS framework is essential to ensure
that the ranking process remains resistant to manipulation
and is reliable for critical cryptographic applications.
Fault detection is another crucial factor when evaluating
PQC algorithms with EDAS. Faults, whether due to hard-
ware failures or malicious attacks, can expose vulnerabilities
in cryptographic systems. Integrating fault detection similar
to schemes used for AES, such as concurrent structure-
independent fault detection schemes for the Advanced En-
cryption Standard, or FPGA-based PQC implementations
using isogenies on elliptic curves enhances the robustness
of the ranking process.

6. Future work
In the future, the proposed method of ranking the post-
quantum cryptographic signatures using Evaluation based
on Distance from Average Solutions (EDAS) can be refined
through the following approaches:
• Including integration of an FPGA-based ranking process,
that significantly enhances the speed and efficiency of the
ranking framework.
• Using machine learning models for dynamic adjustments
based on new performance data, enabling real-time updates.
This approach will help the ranking framework stay relevant
and adaptable.
• Combining EDAS with other decision-making techniques
for a better analysis of algorithm performance. This integra-
tion can yield deeper insights, facilitating more informed
decisions when selecting post-quantum cryptographic algo-
rithms for specific applications.

Figure 5. Ranking scores using eigenvector and real-time aggregation.

• Addressing potential security attacks on the EDAS rank-
ing process, ensuring robustness against data manipula-
tion, side-channel attacks, and fault injection attacks, which
could compromise the evaluation and lead to biased rank-
ings.

7. Conclusion
In conclusion, the research has highlighted the limitations
of traditional methods, such as the Elliptic Curve Digital
Signature Algorithm (ECDSA), in accurately assessing
cryptographic algorithms, particularly in the context of
emerging quantum computing technologies. We introduced
the Evaluation based on Distance from Average Solution
(EDAS) methodology alongside two weight computation
strategies, namely the eigenvector strategy and real-time
aggregation strategy, to enhance cryptographic algorithm
ranking. Through analysis, we find that while both the
real-time aggregation and eigenvector strategies offer
valuable insights, the eigenvector strategy emerges as
the more efficient choice. Despite its increased time
complexity, the eigenvector strategy provides more accurate
and reliable results by considering the inherent importance
of each parameter. This methodical approach enables
informed decision-making in cryptographic algorithm
selection, contributing to advancements in cryptographic
research and development.

Table 4. Ranking of OWCM, FUCOM, and Eigenvector methods.

Algorithms Eigenvector Method OCPM FUCOM
SPHINCS+-Haraka-256f-simple 0.4594 0.3725 0.3406
SPHINCS+-Haraka-128s-simple 0.0796 0.3192 0.3918
SIKE-p751 0.4823 0.4506 0.4895
Dilithium5 0.0532 0.0120 0.0025
Falcon-1024 0.0891 0.1462 0.1641
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