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Abstract:
An efficient and remarkable automatic modulation classification (AMC) technique is essential with
the advent of sixth-generation (6G) communication systems. Using the pre-trained convolutional
neural network (CNN), a deep learning (DL) approach to classify eight types of digital modulated
signals. National Instrument LabVIEW NXG is used to build the modulation transceivers at
100 GHz, a 6G carrier frequency. The dataset was collected in a complicated environment,
including carrier frequency offset (CFO), phase noise (PN), and distinct signal-to-noise ratios
(SNR). Through experimental simulation, an improvement in the classification accuracies was
achieved. In particular, the outstanding accuracy rates achieved are 98.68% and 96.05% using
ResNet18 and ResNet101, respectively. Furthermore, these models can classify the modulated
signals at lower SNRs. These innovative models are suitable and effective to utilize for 6G wireless
communication networks.
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1. Introduction

Advanced evolution in technologies is in progress for sixth-
generation (6G) communication networks for high-speed
data communication and increased connectivity. Sub-THz
frequency bands are expected to be employed in the 6G
systems. These frequencies allow higher modulation or-
der utilization and achieve higher bandwidth efficiencies.
These cutting-edge technologies increase the complexity of
the received signals. Automatic modulation classification
(AMC) is a technique used for interference recognition and
signal detection in both cooperative and non-cooperative
systems. This technique can recognize the modulation type
of the received signals without the need to know the system
parameters. Likelihood and feature-based extraction are
two common types of AMC techniques, where the first one
requires a large amount of computation, and the second
depends on the specialists. Therefore, these two approaches
are insufficient for complicated communication systems.
Sophisticated AMC approaches are required to detect the

modulated signals even in the existence of the carrier fre-
quency offset (CFO) and phase noise (PN). Doppler shift
and the inconsistency between the transceiver’s oscillators
cause CFO, which in turn will induce a rotation on the
received constellation diagram with a specific angle. Mean-
while, the PN reduces the signal-to-noise ratio (SNR) and
rotates the received constellation points around the refer-
ence point [1, 2].
Recently, Deep learning (DL) has become prominent as a
technology in a variety of disciplines. In this context, DL
is widely employed to tackle complicated environmental
issues and enhance the efficiency of wireless systems. DL-
based modulation classification has the capability to recog-
nize signal properties without requiring expert knowledge,
which is the case with conventional techniques. Convolu-
tional neural network (CNN) is one of the most widespread
and effective DL models, which consists of several convo-
lutional, pooling, and fully connected layers. The convolu-
tional layer is essential to recognize different features intro-
duced in the input dataset. After the convolution, the pool-
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ing layer decreases the dimensionality of the obtained fea-
tures, speeding up computational processes. Afterward, the
completely connected layer then combines the previously
separated local features into comprehensive global features,
eventually leading to classification based on these distinct
aspects. Consequently, to understand the nature of the mod-
ulated signals, a transformation is employed to render the
signal into a two-dimensional representation resembling
constellation and time-frequency diagrams. Subsequently,
the convolutional layers become operational, skilfully ex-
tracting intricate features inherent in the image-form signal,
enabling classification using the fully connected layer [2–
7].
DL-based AMC has better durability than conventional
AMC approaches and higher classification accuracies. How-
ever, in the case of small samples, the DL models may not
perform well. To solve this problem, data quality improve-
ment and transfer learning models are required [7].
The remainder of this paper is organized as follows: Sec-
tion 2 presents the literature review, section 3 describes the
methodology of this work, and Section 4 shows the obtained
results and discussion. Finally, the conclusion is in section
5.

2. Literature review
In recent years, there has been a large increase in the use of
DL in AMC, which processes baseband signals intelligently
and automatically extracts valuable features [8, 9].
In [10], CNN was used to classify modulation techniques
in an orthogonal frequency division multiplexing (OFDM)
system, which also involved carrier phase offset (PO). The
proposed approach improves accuracy by eliminating the
PO. The multi-scale network is used in [11] to introduce a
distinctive AMC method. This method learns discriminative
and separable features through a novel loss function combin-
ing the center and cross-entropy losses. Compared to bench-
mark methods, their suggested approach yields higher clas-
sification accuracy. The authors in [12] used a combination
of ResNet and long short-term memory (LSTM) algorithms
for AMC. Except for 64-quadrature amplitude modulation
(64-QAM) and WBFM, their proposed method achieved
a classification accuracy exceeding 98% in most modula-
tion schemes. For extracting the Inphase/Quadrature (IQ)
signal and multi-channel constellation features, the authors
of [13] built a CNN with a double-branch architecture and
exhibited multi-feature fusion. The proposed model has a
recognition rate of 90% to 95%. The identification accuracy
of the CNN decreases by at least 15% when the highest
frequency offset increases from 25 to 100 kHz. However,
the suggested technique only experiences a 6% decrease.
In [14], the authors proposed using a DR2D preprocessing
technique to obtain distinctive modulation features. Con-
currently, they developed a DenseNet feature extraction
network, implementing early fusion to distinguish and dif-
ferentiate the acquired features. The results of their simu-
lations demonstrate that the combination of DenseNet-F22
and the DR2D preprocessing approach constantly achieves
an average classification accuracy exceeding 90%, with ac-
curacy surpassing 60%. Notably, these impressive results

are consistently demonstrated in scenarios with SNRs ex-
ceeding 14 dB. A semi-supervised automatic modulation
recognition model is proposed in [15] to achieve cross-
domain classification. This model can adapt to different
SNR domains without requiring training on labeled data
for that specific domain. According to their findings, the
suggested method outperforms conventional methods by 1%
to 27%. In our previous study [16], the digital modulation
transceivers were designed using LabVIEW NXG and im-
plemented using software-defined radio (SDR) technology
to collect practical datasets at three microwave frequencies.
Three pre-trained CNN algorithms were used for AMC. The
accuracies achieved were 94.64%, 92.86%, and 96.43% us-
ing MobileNet-V2, ResNet50, and ResNet18, respectively.
AMC is presented by the authors in [17] as a lightweight
ensemble model including convolutional, LSTM, and gated
recurrent unit (GRU) layers. This innovative approach is
referred to as a deep recurrent convolutional network, en-
hanced by the addition of an extra gated layer. The results of
their meticulously conducted simulations demonstrate that
the proposed solution achieves a remarkable 7% improve-
ment in accuracy compared to existing models. The au-
thors in [18] proposed a threshold denoising recurrent neu-
ral network for modulation categorization in 6G networks.
The model was tested on several modulation schemes and
SNR. The simulation results demonstrate that the suggested
method outperforms existing methods in accuracy, speed,
and computational complexity.
In [19], KD-GoogLeNet and Squeeze-Excitation (KD-
GSENET) are used for AMC to mitigate noise mismatch
issues. To improve the performance, the complex signals
are transformed into colored images using a K-dimensional
tree. The results show that the utilized method outperforms
other conventional methods. The authors in [20] used com-
binatorial deep learning models for AMC. ConvLSTM and
transformer block neural networks are used for classifica-
tion at both lower and higher SNRs. Their results show that
66% classification accuracy is achieved at lower SNR and
93.5% at higher SNR.
In [21], the authors proposed a scalable AMC model that
enables adaptability for new modulations and various signal
specifications. The proposed model using meta-transformer-
based few-shot learning outperforms other existing tech-
niques at different SNRs. In [22], the authors used two
distinct architectures of CNN models for AMC. Their re-
sults achieved classification accuracy of 53.65% using the
first CNN and 94.39% using the second CNN.
In this study, CNN algorithms have been used for AMC. Var-
ious transceiver modulation schemes have been constructed
using the LabVIEW NXG communication platform to col-
lect datasets. The modulated signals transmitted through
a wireless channel cause distortion at the receiver due to
the CFO, PN, and Gaussian noise. Finally, the received
constellation points are processed using pre-trained CNN
models.

3. Methodology
This work has been accomplished in two phases. The first
phase involved constructing modulator signal transceivers
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and collecting datasets, while the second phase focused on
training the dataset using pre-trained CNN networks. The
entire process is illustrated in Fig. 1.

3.1 Signal model
Using NI LabVIEW NXG, the transmitter is designed to
accommodate a range of modulation schemes, including
4-amplitude shift keying (4-ASK), 4-QAM, 16-phase
shift keying (16-PSK), 16-QAM, 32-QAM, 64-QAM,
256-QAM, and 512-QAM. The block diagram of the
proposed transceiver using LabVIEW NXG is illustrated
in Fig. 2. The MT Generate Bits (Galois, PN Order)
node was used to generate the bit sequences. An MT
Generate QAM system parameter was used to calculate
the QAM parameters. The node accepts an M-ary value
that specifies a predefined symbol map with the number
of distinct symbol map values to use as symbols. The
out parameters and generated bits are entered into the
modulator. Subsequently, the modulated signals are
up-converted to 100 GHz (proposed for 6G networks)
and then transmitted through a noisy wireless channel.
This channel introduces the CFO and PN to the received
signals. The received signals y(t) are represented as follows:

y(t) = x(t)+n(t) (1)

where n(t) is the additive noise. The noiseless signal for
disrupted communication channels is expressed as

x(t) = e j(2π f0+θ(t))
∞

∑
−∞

x(n)h(t) (2)

where f0 is the CFO, and θ(t) is the PN; h(t) is the impulse
response of the channel.

After receiving the modulated signals, the two-dimensional
data of constellation diagrams (IQ) are directly obtained
from LabVIEW. Each image in the dataset contains random
values of CFO and PN induced due to the wireless channel
in addition to noise, as shown in Fig. 3. Finally, the collected
constellation diagrams are prepared for training using CNN
algorithms.

3.2 Training the dataset using CNN
The transfer learning method has been employed to classify
the acquired constellation points at different SNRs using
pre-trained CNN algorithms. ResNet18 and ResNet101 pre-
trained CNNs are used for AMC. ResNet18 and ResNet101
are commonly utilized in practical and experimental ap-
proaches for many reasons that make them attractive over
other models due to the ability to overcome the vanishing
gradient issue, where these models use a residual network
architecture that permits information to proceed through
the network using residual connections. These connections
enable the preservation of the information throughout the
deep layer. In addition, ease of training, where due to the
residual connections, ResNet models like ResNet101 can be
trained without difficulties even at very deep. The ResNet
models also have scalability modifiability and outstanding
performance in image recognition.

3.2.1 ResNet18
ResNet18 is a pre-trained CNN with 71 layers and 78 con-
nections. The size of the input images to be processed in
this network is 227 × 227, and ResNet18 can recognize
1000 images. The image input layer of this network has
been modified to accommodate the new image input with an
input image size of 395 × 296 × 3 for RGB constellation

Figure 1. Proposed transceiver block diagram.

Figure 2. LabVIEW NXG suggested a transceiver scheme.
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Figure 3. Various snapshots of the received constellation diagram at various CFOs, PNs, and SNRs.

diagram images. The fully connected softmax and output
classification layers have been changed to the new layer to
recognize the eight modulation types.

3.2.2 ResNet101
ResNet101 is a pre-trained CNN with 347 layers and 379
connections. The size of the input images to be processed
in this network is 224 × 224, and ResNet101 can recognize

1000 images. The image input layer of this network has
been altered to accommodate the new image input with an
input image size of 395 × 296 × 3 for RGB constellation
diagram images. The fully connected softmax and output
classification layers have been changed to the new layer
to recognize the eight modulation types. The process of
transfer learning is illustrated in Fig. 4.
The training parameters are listed in Table 1. To get ade-
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Figure 4. Transfer learning process.

Table 1. CNN hyperparameters.

Parameter Setting
Optimize algorithm SGDM

Execution environment GPU and CPU
Initial learn rate 0.01
Minibatch size 20, 12

Shuffle Every epoch
Validation frequency 35
Maximum iteration 120
Iteration per epoch 4

Learn rate drop factor 0.1
Learn rate drop factor 10

quate performance, the minibatch size is picked to match
the structure of each network, where the lower values slow
down the training process. As for the initial learning rate, a
compromised value is picked to achieve an acceptable per-
formance. The higher values speed up the training process,
with unstable performance, while the lower values slow
down the training process. As a consequence, an initial
learning rate value of 0.01 was picked up, which is com-
patible with both networks and provides satisfactory results
in terms of accuracy. The optimized algorithm ”SGDM”
enhances the speed to the global minimum error using mo-
mentum, which increases gradient descent and reduces os-
cillations. The execution environment “GPU” accelerates
the training by handling parallel computations, while the

CPU is less efficient and used for initial training and testing.
Shuffling data every epoch enhances learning and reduces
the probability of continuing to a particular sequence, which
induces a more effective model. Evaluating the model on a
regular basis, “35” at a specific number of iterations, “120,”
can observe performance on the validation set, avoid overfit-
ting, and guarantee training ends at an adequate point. The
learn rate drop factor was picked up to 0.1, which enhances
the final accuracy once it is close to optimal performance.
The period of learning rate factor drop was picked up to
10, which means minimizing the learning rate at every ten
iterations boosts the training progress.

4. Results and discussion

This section discusses the simulation results of the 6G AMC
model using pre-trained CNN algorithms and performance
comparison with previous studies. According to the signal
model, the dataset of size 1000 case was obtained from NI
LabVIEW NXG for eight distinct modulation types named
4-ASK, 4-QAM, 16-PSK, 16-QAM, 32-QAM, 64-QAM,
256-QAM, and 512-QAM. The constellation diagram
dataset has been trained and tested with a wide range of
SNRs (-20 to 30 dB), various PN angles, and CFOs. The
simulations have been performed with Matlab R2020b and
a computing system with an Intel(R) Core(TM) i7-8550U
CPU @ 1.80 GHz, 1.99 GHz, and 8.00 GB Ram. Each
model underwent simulation within a setting employing
minibatch sizes of 20 and encompassing 12 training cycles.
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An early interrupt mechanism was employed to counteract
overfitting. Additionally, validation checks were conducted
every 35 cycles, while the maximum epoch limit was
capped at 30.
The time that ResNet18 took to train the dataset was 3
minutes and 11 seconds, while in ResNet101, the training
time was 4 minutes and 17 seconds. As for the test time,
both ResNet18 and Resnet101 took an average test rate of
80 cases/second.
The accuracies of the proposed AMC obtained from the
performances of ResNet18 and ResNet101 are listed in
Table 2, which illustrates that the validation accuracy
increases at higher SNRs and decreases at lower SNRs.
Figs. 5 and 6 compare the recognition performances in
terms of accuracy versus SNR of ResNet18 and ResNet101.
Fig. 5 shows that the validation accuracy of ResNet18 is

Figure 5. Validation accuracies.

Figure 6. Test accuracies.

around 2.55% higher than that of ResNet101 when the
SNR is 30 dB. At various SNRs, ResNet18 achieved higher
classification accuracy than ResNet101. At SNR 0 dB,
ResNet101 achieved 1% higher recognition accuracy than
ResNet18. Fig. 6 shows that the test accuracy of ResNet18
is around 0.8% higher than that of ResNet101 when the
SNR is 30 dB. At the other SNRs, ResNet18 and ResNet101
achieved slightly different recognition accuracies. Due to
the difference in the structure of the utilized CNN networks,
where the ResNet101 has more layers than ResNet18, the
training time will be the longest, and it can be noticed a
lower accuracy was achieved.
The confusion matrix evaluates the effectiveness of an
algorithm. It represents the recognition accuracy for
each modulation approach. Fig. 7 presents the confusion
matrices of AMC. In detail, at SNR 30 dB, the total test
accuracy achieved is 99.2% and 98.4% using ResNet18 and
ResNet101, respectively, where a few of 4-ASK, 32-QAM,
and 512-QAM are misclassed. The misclassification
increases as the SNR decreases, where the test recognition
accuracy achieved at 0 dB is 90.1% and 90.5% using
ResNet101 and ResNet18, respectively.
Table 3 compares previous studies on this work in terms of
DL models used, the types of modulations for classification,
and the maximum classification accuracy achieved. As
shown in Table 2, for [10], the recognition accuracy
achieved is 90%, while in comparison, our proposed AMC
achieved 98.68% and 96.05%. At -10 dB, the recognition
accuracy of the designed AMC exceeds 70%, while in [10],
the recognition accuracy is below 70%. At SNR 10 dB,
the proposed work achieved higher recognition accuracy
at 93%, while in [12], the accuracy achieved at a similar
SNR was 91%. From 0 to 10 dB, [13] achieved the same
accuracy, while in the proposed work for the same SNR
range, the accuracy increases gradually. At -10 and -20
dB in [15], the recognition accuracies achieved are below
15% and 10%, while in this work and at the same SNRs,
the recognition accuracies are higher at 60% and 70%. The
recognition accuracies achieved in [17] are lower at 20%,
30%, and 80% at -20, -10, and 0 dB, respectively. The
recognition accuracy achieved in [18] is lower at 20%, 30%,
and 90% at -20, -10, and 0 dB, respectively. The utilization
of pre-trained CNN models (ResNet18 and ResNet18)
that have been trained on massive and diverse datasets
to recognize features and patterns of the cases, which
can boost the performance after retaining and achieving
higher accuracies than other proposed models LSTM and
Generative Adversarial Networks (GAN) over complicated
environment.

Table 2. Validation accuracies of resnet18 and resnet101 at various SNRs.

Model
Accuracy
(-20dB)

Accuracy
(-10dB)

Accuracy
(0dB)

Accuracy
(10dB)

Accuracy
(20dB)

Accuracy
(30dB)

ResNet18 68% 72% 91% 93.76% 94.7% 98.6%
ResNet101 66% 71% 92% 94.72% 94.9% 96.05%
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(a) (b)

Figure 7. Confusion Matrices of (a) ResNet101 (30dB), (b) ResNet18 (30dB).

Table 3. Comparisons with previously studied literature models.

Reference Year Model Modulation Types Used Max
Accuracy (%)

[10] 2020 CNN
Binary phase shift keying (BPSK),

QPSK, 8-PSK, 16-QAM
98

[12] 2022 LSTM-CNN
BPSK, QPSK, 8-PSK, BFSK, CPFSK,

4-PAM, 16-QAM, 64-QAM
98

[13] 2023 SCFNet
4-ASK, 2-PSK, 4-PSK, 8-PSK,

16-QAM, 32-QAM, 64-QAM, 128-QAM
90 to 95

[14] 2023 DenseNet-22
BPSK, CW, LFM PULSE, ,

PAM, SINFM, TRIFM
90

[15] 2023 SemiAMC DL
AM-SSB, AM-DSB, BPSK, QPSK,

8-PSK, CPFSK, GFSK, 4-PAM,
16-QAM, 64-QAM, WBFM

41.6 at SNR -4 dB

[16] 2023
CNN (MobileN

et-V2, ResNet 50,
ResNet 18)

4-PAM,BPSK,QPSK,
OQPSK, 8-PSK,16-PSK,64-PSK,16-QAM,

94.64, 92.86,
and 96.43

[17] 2022 MSNet
BPSK, QPSK, 8-PSK, 16-QAM,

64-QAM, GFSK, CPFSK, 4-PAM,
90.26

[18] 2023 TDRNN
AM-SSB, AM-DSB, BPSK, QPSK, 8-PSK,

CPFSK, GFSK, 16-QAM, 64-QAM, 4-PAM, WBFM
63.5

[19] 2023 KD-GSENET
16-QAM,32-QAM,64-QAM, BPSK, ,

QPSK, OQPSK 8-PSK, 4-ASK
100

[20] 2024
ConvLSTM and

transformer block
NN

AM-SSB, AM-DSB, BPSK, QPSK, 8-PSK,
CPFSK, 4-PAM, 16-QAM, 64-QAM, WBFM

93.5

[21] 2024 Meta-Transformer

AM-DSB-WC, AM-SSB-WC, AM-DSB-SC, AM-SSB-SC, 4-ASK, 8-ASK,
BPSK, QPSK,, OQPSK, 8-PSK, 16-PSK, 32-PSK,

16-APSK, 32-APSK, 128-APSK,
16-QAM, 32-QAM, 64-QAM, 128-QAM, 256-QAM,

FM, GMSK, OOK

90

[22] 2024 two CNN models
AM-SSB, AM-DSB, BPSK, 2-PSK, QPSK, 8-PSK,

16-PSK, CPFSK, GFSK, 4-PAM, 8-QAM,
16-QAM, 64-QAM, 32-QAM, WBFM

53.65 and 94.39

This work 2024
CNN (ResNet18,

ResNet101)
4-ASK,16-PSK, 4-QAM, 16-QAM,

32-QAM, 64-QAM,256-QAM, 512-QAM
98.68 and 96.05
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5. Conclusion

This study introduces an AMC model designed to align
with the standards of 6G communication networks. The ap-
proach comprises two main stages. In the first stage, a range
of transceivers with different modulators was created. This
allowed the collection of received constellation point sig-
nals, which were then compiled into a dataset and prepared
for training. The second stage involved training this dataset
using pre-trained CNN models. The key achievement of this
research lies in the model’s ability to identify modulation
types under various CFO, PN, and SNR conditions. By
employing two types of pre-trained CNNs, the proposed
models achieved impressive recognition accuracies. Specif-
ically, using ResNet18 and ResNet101, the models attained
recognition accuracies of 98.68% and 96.05%, respectively.
These high percentages effectively meet the evolving needs
of advanced 6G communication networks.

Supplementary Table: Abbreviations

6G Sixth-Generation
AMC Automatic Modulation Classification
AM-DSB Amplitude Modulation-Double Side Band
AM-SSB Amplitude Modulation-Single Side Band
ASK Amplitude Shift Keying
BFSK Binary Frequency Shift Keying
BPSK Binary Phase Shift Keying
CNN Convolutional Neural Network
CFO Carrier Frequency Offset
CPFSK Continuous-Phase Frequency Shift Keying
CW Continuous Wave
DL Deep Learning
DR2D
FM

Data Rearrangement and the 2D
Frequency Modulation

GAN Generative Adversarial Networks
GFSK
GMSK

Gaussian Frequency Shift Keying
Gaussian Minimum Shift Keying

GRU Gated Recurrent Unit
IQ In phase /Quadrature
LFM-PULSE Linear Frequency Modulation Pulsing
LSTM Long-Short Term Memory
MSNet Mass Spectra Network
OFDM
OOK
OQPSK

Orthogonal Frequency Division Multiplexing
On Off Keying
Offset Quadrature Phase Shift Keying

PAM Pulse Amplitude Modulation
PO Phase Offset
PN Phase Noise
PSK Phase Shift Keying
QAM
QPSK

Quadrature Amplitude Modulation
Quadrature Phase Shift Keying

SCFNet Semantic Correction and Focusing Network
SINFM Sine wave Frequency Modulation
SNR Signal-to-Noise Ratio
TDRNN Time-Delay Recurrent Neural Network
TRI
M

Triangle wave Frequency Modulation

WBFM Wide Band Frequency Modulation
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