| تعداد نشریات | 418 |
| تعداد شمارهها | 10,013 |
| تعداد مقالات | 83,708 |
| تعداد مشاهده مقاله | 79,582,844 |
| تعداد دریافت فایل اصل مقاله | 56,277,977 |
HIERARCHICAL COMPUTATION OF HERMITE SPHERICAL INTERPOLANT | ||
| International Journal of Mathematical Modelling & Computations | ||
| مقاله 1، دوره 2، 4 (FALL)، فروردین 2012، صفحه 247-259 اصل مقاله (242.08 K) | ||
| نویسندگان | ||
| A. Lamnii؛ H. Mraoui | ||
| Faculty of Science and Technology, University Hassan first, Settat, Morocco Morocco | ||
| چکیده | ||
| In this paper, we propose to extend the hierarchical bivariateHermite Interpolant to the spherical case. Let $T$ be an arbitraryspherical triangle of the unit sphere $S$ and let $u$ be a functiondefined over the triangle $T$. For $k\in \mathbb{N}$, we consider aHermite spherical Interpolant problem $H_k$ defined by some datascheme $\mathcal{D}_k(u)$ and which admits a unique solution $p_k$in the space $B_{n_k}(T)$ of homogeneous Bernstein-B'ezierpolynomials of degree $n_k=2k$ (resp. $n_k=2k+1$) defined on $T$. Wediscuss the case when the data scheme $\mathcal{D}_{r}(u)$ arenested, i.e., $\mathcal{D}_{r-1}(u)\subset \mathcal{D}_{r}(u)$ forall $1 \leq r \leq k$. This, give a recursive formulae to computethe polynomial $p_k$. Moreover, this decomposition give a new basisfor the space $B_{n_k}(T)$, which are the hierarchical structure.The method is illustrated by a simple numerical example. | ||
| کلیدواژهها | ||
| Spherical splines؛ Hermite interpolation؛ Recursive computation | ||
|
آمار تعداد مشاهده مقاله: 9,135 تعداد دریافت فایل اصل مقاله: 919 |
||