تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,560 |
تعداد مشاهده مقاله | 77,801,286 |
تعداد دریافت فایل اصل مقاله | 54,843,919 |
HIERARCHICAL COMPUTATION OF HERMITE SPHERICAL INTERPOLANT | ||
International Journal of Mathematical Modelling & Computations | ||
مقاله 1، دوره 2، 4 (FALL)، فروردین 2012، صفحه 247-259 اصل مقاله (242.08 K) | ||
نویسندگان | ||
A. Lamnii؛ H. Mraoui | ||
Faculty of Science and Technology, University Hassan first, Settat, Morocco Morocco | ||
چکیده | ||
In this paper, we propose to extend the hierarchical bivariateHermite Interpolant to the spherical case. Let $T$ be an arbitraryspherical triangle of the unit sphere $S$ and let $u$ be a functiondefined over the triangle $T$. For $k\in \mathbb{N}$, we consider aHermite spherical Interpolant problem $H_k$ defined by some datascheme $\mathcal{D}_k(u)$ and which admits a unique solution $p_k$in the space $B_{n_k}(T)$ of homogeneous Bernstein-B'ezierpolynomials of degree $n_k=2k$ (resp. $n_k=2k+1$) defined on $T$. Wediscuss the case when the data scheme $\mathcal{D}_{r}(u)$ arenested, i.e., $\mathcal{D}_{r-1}(u)\subset \mathcal{D}_{r}(u)$ forall $1 \leq r \leq k$. This, give a recursive formulae to computethe polynomial $p_k$. Moreover, this decomposition give a new basisfor the space $B_{n_k}(T)$, which are the hierarchical structure.The method is illustrated by a simple numerical example. | ||
کلیدواژهها | ||
Spherical splines؛ Hermite interpolation؛ Recursive computation | ||
آمار تعداد مشاهده مقاله: 9,128 تعداد دریافت فایل اصل مقاله: 910 |