تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,623 |
تعداد مشاهده مقاله | 78,416,457 |
تعداد دریافت فایل اصل مقاله | 55,445,015 |
Distributed Agreement Based Ml Approximation | ||
Journal of Advances in Computer Research | ||
شناسنامه علمی شماره، دوره 7، شماره 4 - شماره پیاپی 26، بهمن 2016، صفحه 67-78 اصل مقاله (670.56 K) | ||
نویسندگان | ||
Mohamad Mohamadi1؛ Hamid Parvin* 1، 2؛ Eshagh Faraji1، 2؛ Sajad Parvin1 | ||
1Department of Computer Engineering, Nourabad Mamasani Branch, Islamic Azad University, Nourabad Mamasani, Iran | ||
2Young Researchers and Elite Club, Nourabad Mamasani Branch, Islamic Azad University, Nourabad Mamasani, Iran | ||
چکیده | ||
In this manuscript we suggest a fast adaptive distributed method for maximum likelihood approximation (MLA) in multiple view object localization problem. For this purpose, we use "up to scale" property of projective geometry and by defining coefficients for convergence criterion, we increase the convergence speed of the consensus algorithm. We try to present a mathematical model for the problem. We use two types of error function. The proposed method uses maximum likelihood for obtaining its best parameters. Our approach utilizes "up to scale" property in projective geometry to reach the consensus quickly. The difference between nodes' values and meanwhile consensus values are evaluated by two error functions. To estimate consensus value in the second error function, we used local weighted average of each node. At the last of the paper, we prove our claims by experimental results. | ||
کلیدواژهها | ||
Maximum Likelihood Approximation؛ Data Fusion؛ Consensus Algorithm؛ Homography | ||
آمار تعداد مشاهده مقاله: 2,003 تعداد دریافت فایل اصل مقاله: 23,170 |