- Madani K. Water management in Iran: what is causing the looming crisis? J Environ Studies Sci. 2014; 4
(4): 315-328. 2. Davis-Belmar C, Cautivo D, Demergasso C, Rautenbach G. Bioleaching of copper secondary sulfide ore in the presence of chloride by means of inoculation with chloride-tolerant microbial culture. Hydrometallurgy. 2014; 150: 308-312. 3. Gao X, Yang Y, Pownceby MI, Zhong S, Chen M. A sulfur K-Edge XANES and raman study on the effect of chloride ion on bacterial and chemical leaching of chalcopyrite at 25° C. Mining, Metallurgy Explor. 2019; 36(2): 343-352. 4. Vakylabad AB, Schaffie M, Naseri A, Ranjbar M, Manafi Z. Optimization of staged bioleaching of lowgrade chalcopyrite ore in the presence and absence of chloride in the irrigating lixiviant: ANFIS simulation. Bioprocess Biosystems Engin. 2016; 39(7): 1081-1104. 5. Velásquez-Yévenes L, Torres D, Toro N. Leaching of chalcopyrite ore agglomerated with high chloride concentration and high curing periods. Hydrometallurgy. 2018; 181: 215-220. 6. Zhao H, Zhang Y, Zhang X, Qian L, Sun M, Yang Y. The dissolution and passivation mechanism of chalcopyrite in bioleaching: An overview. Minerals Engin. 2019; 136: 140-154. 7. Darezereshki E, Darban AK, Abdollahy M, Jamshidi-Zanjani A, Vakylabad AB, Mohammadnejad S. The leachability study of iron-oxides from mine tailings in a hybrid of sulfate-chloride lixiviant. J Environ Chem Eng. 2018; 6(4): 5167-5176. 8. Hernández PC, Dupont J, Herreros OO, Jimenez YP, Torres CM. Accelerating copper leaching from sulfide ores in acid-nitrate-chloride media using agglomeration and curing as pretreatment. Minerals. 2019; 9(4): 250. 9. Castillo J, Sepúlveda R, Araya G, Guzmán D, Toro N, Pérez K. Leaching of white metal in a NaClH2SO4 system under environmental conditions. Minerals. 2019; 9(5): 319. 10. Hidalgo T, Kuhar L, Beinlich A, Putnis A. Kinetics and mineralogical analysis of copper dissolution from a bornite/chalcopyrite composite sample in ferric-chloride and methanesulfonic-acid solutions. Hydrometallurgy. 2019. 11. Khaleque HN, Kaksonen AH, Boxall NJ, Watkin EL. Chloride ion tolerance and pyrite bioleaching capabilities of pure and mixed halotolerant, acidophilic iron-and sulfur-oxidizing cultures. Minerals Engineering. 2018; 120: 87-93. 12. Martins FL, Patto GB, Leão VA. Chalcopyrite bioleaching in the presence of high chloride concentrations. J Chem Technol Biotechnol. 2019. 13. Vakylabad AB, Schaffie M, Naseri A, Ranjbar M, Manafi Z. A procedure for processing of pregnant leach solution (PLS) produced from a chalcopyrite-ore bio-heap: CuO Nano-powder fabrication. Hydrometallurgy. 2016; 163: 24-32. 14. Robertson S, van Staden P, Seyedbagheri A. Advances in high-temperature heap leaching of refractory copper sulphide ores. J South Afr Institute Mining Metallurgy. 2012; 112(12): 1045-1050. 15. Watling H. The bioleaching of sulphide minerals with emphasis on copper sulphides—a review. Hydrometallurgy. 2006; 84(1-2): 81-108. 16. Vilcáez J, Inoue C. Mathematical modeling of thermophilic bioleaching of chalcopyrite. Minerals Eng. 2009; 22(11): 951-960. 17. Dopson M, Lövgren L, Boström D. Silicate mineral dissolution in the presence of acidophilic microorganisms: implications for heap bioleaching. Hydrometallurgy. 2009; 96(4): 288-293. 18. Senanayake G. A review of chloride assisted copper sulfide leaching by oxygenated sulfuric acid and mechanistic considerations. Hydrometallurgy. 2009; 98(1-2): 21-32. 19. Vakylabad AB, Schaffie M, Ranjbar M, Manafi Z, Darezereshki E. Bio-processing of copper from combined smelter dust and flotation concentrate: A comparative study on the stirred tank and airlift reactors. J Hazardous Materials. 2012; 241: 197-206. 20. Vakylabad AB, Ranjbar M, Manafi Z, Bakhtiari F. Tank bioleaching of copper from combined flotation concentrate and smelter dust. Int Biodeterior Biodegrad. 2011; 65(8): 1208-1214. 21. Vakylabad AB. A comparison of bioleaching ability of mesophilic and moderately thermophilic culture on copper bioleaching from flotation concentrate and smelter dust. Int J of Mineral Processing. 2011; 101(1-4): 94-99. 22. Pakostova E, Grail BM, Johnson DB, editors. Column bioleaching of a saline, calcareous copper sulfide ore. Solid State Phenomena; 2017. 23. Hawkes RB, Franzmann PD, O’hara G, Plumb JJ. Ferroplasma cupricumulans sp. nov., a novel moderately thermophilic, acidophilic archaeon isolated from an industrial-scale chalcocite bioleach heap. Extremophiles. 2006; 10(6): 525-530. 24. Leahy M, Davidson M, Schwarz M. A model for heap bioleaching of chalcocite with heat balance: mesophiles and moderate thermophiles. Hydrometallurgy. 2007; 85(1): 24-41. 25. Petersen J, Dixon DG. Principles, mechanisms and dynamics of chalcocite heap bioleaching. Microbial processing of metal sulfides: Springer; 2007. p. 193-218. 26. Xingyu L, Biao W, Bowei C, Jiankang W, Renman R, Guocheng Y. Bioleaching of chalcocite started at different pH: Response of the microbial community to environmental stress and leaching kinetics. Hydrometallurgy. 2010; 103(1-4): 1-6. 27. Hawkes RB, Franzmann PD, Plumb JJ. Moderate thermophiles including “Ferroplasma cupricumulans” sp. nov. dominate an industrial-scale chalcocite heap bioleaching operation. Hydrometallurgy. 2006; 83(1-4): 229-236. 28. Bobadilla-Fazzini RA, Pérez A, Gautier V, Jordan H, Parada P. Primary copper sulfides bioleaching vs. chloride leaching: Advantages and drawbacks. Hydrometallurgy. 2017; 168: 26-31. 29. Lu Z, Jeffrey M, Lawson F. The effect of chloride ions on the dissolution of chalcopyrite in acidic solutions. Hydrometallurgy. 2000; 56(2): 189-202. 30. Lu Z, Jeffrey M, Lawson F. An electrochemical study of the effect of chloride ions on the dissolution of chalcopyrite in acidic solutions. Hydrometallurgy. 2000; 56(2): 145-155. 31. Dutrizac J. Elemental sulphur formation during the ferric chloride leaching of chalcopyrite. Hydrometallurgy. 1990; 23(2-3): 153-176. 32. Tao H, Dongwei L. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy – a presentation. Biotechnol Report. 2014; 4: 107-119. 33. Akcil A, Ciftci H, Deveci H. Role and contribution of pure and mixed cultures of mesophiles in bioleaching of a pyritic chalcopyrite concentrate. Minerals Eng. 2007; 20(3): 310-318. 34. Tao H, Dongwei L. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy–a presentation. Biotechnol Report. 2014; 4: 107-119. 35. Rawlings D, Tributsch H, Hansford G. Reasons why'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiol Reading. 1999; 145(1): 5-14. 36. Petersen J, Dixon D. Thermophilic heap leaching of a chalcopyrite concentrate. Minerals Eng. 2002; 15(11): 777-785.
|