تعداد نشریات | 418 |
تعداد شمارهها | 10,004 |
تعداد مقالات | 83,629 |
تعداد مشاهده مقاله | 78,548,070 |
تعداد دریافت فایل اصل مقاله | 55,629,475 |
On Semitopological De Morgan Residuated Lattices | ||
Transactions on Fuzzy Sets and Systems | ||
مقاله 9، دوره 2، شماره 1، مرداد 2023، صفحه 133-146 اصل مقاله (262.82 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.30495/tfss.2023.1966671.1047 | ||
نویسنده | ||
Liviu-Constantin Holdon* | ||
Die Fakultt fr Unternehmertum, Ingenieurwissenschaften und Geschftsfhrung Ingenieurwissenschaften und Management Polytechnische Universitt Bukarest, Splaiul Independentei st., RO-060042 Bucharest (6), Romania E-mail: holdon_liviu@yahoo.com International Theoretical High School of Informatics Bucharest, Romania. E-mail: holdon.liviu@ichb.ro | ||
چکیده | ||
The class of De Morgan residuated lattices was introduced by L. C. Holdon (Kybernetika 54(3):443-475, 2018), recently, many mathematicians have studied the theory of ideals or filters in De Morgan residuated lattices and some of them investigated the properties of De Morgan residuated lattices endowed with a topology. In this paper, we introduce the notion of semitopological De Morgan residuated lattice, we present some examples and by considering the notion of upsets, for any element $a$ of a De Morgan residuated lattice $L,$ there is a topology $\tau_{a}$ on $L$ and we show that $L$ endowed with the topology $\tau_{a}$ is semitopological with respect to $\vee, \wedge$ and $\odot,$ and right topological with respect to $\rightarrow.$ Moreover, in the general case of residuated lattices we prove that $L$ endowed with the topology $\tau_{a}$ is semitopological with respect to $\odot$ and right topological with respect to $\rightarrow.$ Finally, we obtain some of the topological aspects of this structure such as $L$ endowed with the topology $\tau_{a}$ is a $\mathbf{T_0}$-space, but it is not a $\mathbf{T_1}$-space or Hausdorff space. | ||
کلیدواژهها | ||
Residuated lattice؛ De Morgan laws؛ De Morgan residuated lattice؛ Filter؛ Semitopological algebras؛ Hausdorff space | ||
مراجع | ||
[1] R. A. Borzooei, G. R. Rezaei and N. Kouhestani, On (semi) topological BL-algebra, Iran. J. Math. Sci. Inform., 6(1) (2011), 59-77. [2] R. A. Borzooei and N. Kouhestani, On (semi)topological residuated lattices, Ann. Univ. Craiova, Math. Comp. Sc. Series, 41(1) (2014), 1529. [3] D. Busneag, D. Piciu and A. M. Dina, Ideals in residuated lattices, Carpathian J. Math., 37(1) (2021), 53-63. [4] N. Galatos, P. Jipsen, T. Kowalski and H. Ono, Residuated Lattices: an algebraic glimpse at substructural logics, Stud. Logic Found. Math., Elsevier, (2007). [5] P. Hajek, Mathematics of Fuzzy Logic, Dordrecht: Kluwer Academic Publishers, (1998). [6] L. C. Holdon, On ideals in De Morgan residuated lattices, Kybernetika, 54(3) (2018), 443-475. [7] L. C. Holdon, New topology in residuated lattices, Open Math., 16 (2018), 1-24. [8] L. C. Holdon, The prime and maximal spectra and the reticulation of residuated lattices with applications to De Morgan residuated lattices, Open Math., 18 (2020), 1206-1226. [9] L. C. Holdon and A. Borumand Saeid, Ideals of Residuated Lattices, Stud. Sci. Math. Hung., 58(2) (2021), 182-205. [10] F. Esteva and L. Godo, Monoidal t-norm based logic: towards a logic for left-continnuos t-norms, Fuzzy Sets Syst., 124(3) (2001), 271-288. [11] A. Iorgulescu, Algebras of logic as BCK algebra, Romania: Academy of Economic Studies Bucharest, (2008). [12] S. Jenei and F. Montagna, A proof of standard completeness for Esteva and Godos logic MTL, Stud. Log., 70 (2002), 183-192. [13] T. Kowalski and H. Ono, Residuated lattices: An algebraic glimpse at logics without contraction, JAIST, (2002). [14] J. R. Munkres, Topology: a rst course, Prentice-Hall, (1974). [15] D. Piciu, Algebras of Fuzzy Logic, Craiova: Editura Universitaria Craiova, (2007). [16] D. Piciu, Prime, minimal prime and maximal ideals spaces in residuated lattices, Fuzzy Sets Syst., 405 (2021), 47-64. [17] E. Turunen, Mathematics Behind Fuzzy logic, New York: Physica-Verlag, (1999). [18] M. Ward and R. P. Dilworth, Residuated lattices, Trans. Am. Math. Soc., 45 (1939), 335-354. [19] F. Woumfo, B. B. Koguep Njionou, R. T. A. Etienne and L. Celestin, On State Ideals and State Relative Annihilators in De Morgan State Residuated Lattices, Int. J. Math. Sci., (2022). Available online: https://doi.org/10.1155/2022/6213448 [20] O. Zahiri and R. A. Borzooei, Semitopological BL-algebras and MV-algebras, Demonstr. Math., 47(3) (2014), 522-537. | ||
آمار تعداد مشاهده مقاله: 142 تعداد دریافت فایل اصل مقاله: 1,363 |